feat: add lem ingest command + go-huggingface dependency
Ingests benchmark data (content scores, capability scores, training curves) from JSONL files and mlx_lm logs into InfluxDB. Batched writes, iteration extraction from checkpoint labels. Also adds github.com/hupe1980/go-huggingface for future HF sync. Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
This commit is contained in:
parent
a18fd1c44e
commit
0afa5e9147
5 changed files with 560 additions and 0 deletions
1
go.mod
1
go.mod
|
|
@ -8,6 +8,7 @@ require (
|
|||
github.com/goccy/go-json v0.10.5 // indirect
|
||||
github.com/google/flatbuffers v25.1.24+incompatible // indirect
|
||||
github.com/google/uuid v1.6.0 // indirect
|
||||
github.com/hupe1980/go-huggingface v0.0.15 // indirect
|
||||
github.com/klauspost/compress v1.17.11 // indirect
|
||||
github.com/klauspost/cpuid/v2 v2.2.9 // indirect
|
||||
github.com/marcboeker/go-duckdb v1.8.5 // indirect
|
||||
|
|
|
|||
2
go.sum
2
go.sum
|
|
@ -8,6 +8,8 @@ github.com/google/flatbuffers v25.1.24+incompatible h1:4wPqL3K7GzBd1CwyhSd3usxLK
|
|||
github.com/google/flatbuffers v25.1.24+incompatible/go.mod h1:1AeVuKshWv4vARoZatz6mlQ0JxURH0Kv5+zNeJKJCa8=
|
||||
github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=
|
||||
github.com/google/uuid v1.6.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
|
||||
github.com/hupe1980/go-huggingface v0.0.15 h1:tTWmUGGunC/BYz4hrwS8SSVtMYVYjceG2uhL8HxeXvw=
|
||||
github.com/hupe1980/go-huggingface v0.0.15/go.mod h1:IRvsik3+b9BJyw9hCfw1arI6gDObcVto1UA8f3kt8mM=
|
||||
github.com/klauspost/compress v1.17.11 h1:In6xLpyWOi1+C7tXUUWv2ot1QvBjxevKAaI6IXrJmUc=
|
||||
github.com/klauspost/compress v1.17.11/go.mod h1:pMDklpSncoRMuLFrf1W9Ss9KT+0rH90U12bZKk7uwG0=
|
||||
github.com/klauspost/cpuid/v2 v2.2.9 h1:66ze0taIn2H33fBvCkXuv9BmCwDfafmiIVpKV9kKGuY=
|
||||
|
|
|
|||
3
main.go
3
main.go
|
|
@ -20,6 +20,7 @@ Commands:
|
|||
export Export golden set to training-format JSONL splits
|
||||
expand Generate expansion responses via trained LEM model
|
||||
conv Generate conversational training data
|
||||
ingest Ingest benchmark data into InfluxDB
|
||||
`
|
||||
|
||||
func main() {
|
||||
|
|
@ -43,6 +44,8 @@ func main() {
|
|||
lem.RunExport(os.Args[2:])
|
||||
case "conv":
|
||||
lem.RunConv(os.Args[2:])
|
||||
case "ingest":
|
||||
lem.RunIngest(os.Args[2:])
|
||||
default:
|
||||
fmt.Fprintf(os.Stderr, "unknown command: %s\n\n%s", os.Args[1], usage)
|
||||
os.Exit(1)
|
||||
|
|
|
|||
331
pkg/lem/ingest.go
Normal file
331
pkg/lem/ingest.go
Normal file
|
|
@ -0,0 +1,331 @@
|
|||
package lem
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"encoding/json"
|
||||
"flag"
|
||||
"fmt"
|
||||
"log"
|
||||
"os"
|
||||
"regexp"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// RunIngest is the CLI entry point for the ingest command.
|
||||
// It reads benchmark JSONL files and training logs, then pushes
|
||||
// the data into InfluxDB as line protocol for the lab dashboard.
|
||||
func RunIngest(args []string) {
|
||||
fs := flag.NewFlagSet("ingest", flag.ExitOnError)
|
||||
|
||||
contentFile := fs.String("content", "", "Content scores JSONL file")
|
||||
capabilityFile := fs.String("capability", "", "Capability scores JSONL file")
|
||||
trainingLog := fs.String("training-log", "", "MLX LoRA training log file")
|
||||
model := fs.String("model", "", "Model name tag (required)")
|
||||
runID := fs.String("run-id", "", "Run ID tag (defaults to model name)")
|
||||
influxURL := fs.String("influx", "", "InfluxDB URL")
|
||||
influxDB := fs.String("influx-db", "", "InfluxDB database name")
|
||||
batchSize := fs.Int("batch-size", 100, "Lines per InfluxDB write batch")
|
||||
|
||||
if err := fs.Parse(args); err != nil {
|
||||
log.Fatalf("parse flags: %v", err)
|
||||
}
|
||||
|
||||
if *model == "" {
|
||||
fmt.Fprintln(os.Stderr, "error: --model is required")
|
||||
fs.Usage()
|
||||
os.Exit(1)
|
||||
}
|
||||
|
||||
if *contentFile == "" && *capabilityFile == "" && *trainingLog == "" {
|
||||
fmt.Fprintln(os.Stderr, "error: at least one of --content, --capability, or --training-log is required")
|
||||
fs.Usage()
|
||||
os.Exit(1)
|
||||
}
|
||||
|
||||
if *runID == "" {
|
||||
*runID = *model
|
||||
}
|
||||
|
||||
influx := NewInfluxClient(*influxURL, *influxDB)
|
||||
total := 0
|
||||
|
||||
if *contentFile != "" {
|
||||
n, err := ingestContentScores(influx, *contentFile, *model, *runID, *batchSize)
|
||||
if err != nil {
|
||||
log.Fatalf("ingest content scores: %v", err)
|
||||
}
|
||||
fmt.Printf(" Content scores: %d points\n", n)
|
||||
total += n
|
||||
}
|
||||
|
||||
if *capabilityFile != "" {
|
||||
n, err := ingestCapabilityScores(influx, *capabilityFile, *model, *runID, *batchSize)
|
||||
if err != nil {
|
||||
log.Fatalf("ingest capability scores: %v", err)
|
||||
}
|
||||
fmt.Printf(" Capability scores: %d points\n", n)
|
||||
total += n
|
||||
}
|
||||
|
||||
if *trainingLog != "" {
|
||||
n, err := ingestTrainingCurve(influx, *trainingLog, *model, *runID, *batchSize)
|
||||
if err != nil {
|
||||
log.Fatalf("ingest training curve: %v", err)
|
||||
}
|
||||
fmt.Printf(" Training curve: %d points\n", n)
|
||||
total += n
|
||||
}
|
||||
|
||||
fmt.Printf("\nTotal: %d points ingested\n", total)
|
||||
}
|
||||
|
||||
var iterRe = regexp.MustCompile(`@(\d+)`)
|
||||
|
||||
// extractIteration pulls the iteration number from a label like "model@200".
|
||||
func extractIteration(label string) int {
|
||||
m := iterRe.FindStringSubmatch(label)
|
||||
if m == nil {
|
||||
return 0
|
||||
}
|
||||
n, _ := strconv.Atoi(m[1])
|
||||
return n
|
||||
}
|
||||
|
||||
// contentScoreEntry is one line from a content scores JSONL file.
|
||||
type contentScoreEntry struct {
|
||||
Label string `json:"label"`
|
||||
Aggregates map[string]float64 `json:"aggregates"`
|
||||
Probes map[string]contentProbeEntry `json:"probes"`
|
||||
}
|
||||
|
||||
type contentProbeEntry struct {
|
||||
Scores map[string]interface{} `json:"scores"`
|
||||
}
|
||||
|
||||
// ingestContentScores reads a content scores JSONL file and writes
|
||||
// content_score and probe_score measurements to InfluxDB.
|
||||
func ingestContentScores(influx *InfluxClient, filepath, model, runID string, batchSize int) (int, error) {
|
||||
f, err := os.Open(filepath)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("open %s: %w", filepath, err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var lines []string
|
||||
count := 0
|
||||
scanner := bufio.NewScanner(f)
|
||||
scanner.Buffer(make([]byte, 1024*1024), 1024*1024)
|
||||
|
||||
for scanner.Scan() {
|
||||
text := strings.TrimSpace(scanner.Text())
|
||||
if text == "" {
|
||||
continue
|
||||
}
|
||||
|
||||
var entry contentScoreEntry
|
||||
if err := json.Unmarshal([]byte(text), &entry); err != nil {
|
||||
continue
|
||||
}
|
||||
|
||||
label := entry.Label
|
||||
if label == "" {
|
||||
label = "unknown"
|
||||
}
|
||||
iteration := extractIteration(label)
|
||||
hasKernel := strings.Contains(strings.ToLower(label), "kernel")
|
||||
|
||||
// Aggregate scores.
|
||||
for dim, val := range entry.Aggregates {
|
||||
lp := fmt.Sprintf("content_score,model=%s,run_id=%s,label=%s,dimension=%s,has_kernel=%t score=%f,iteration=%di",
|
||||
escapeLp(model), escapeLp(runID), escapeLp(label), escapeLp(dim), hasKernel, val, iteration)
|
||||
lines = append(lines, lp)
|
||||
count++
|
||||
}
|
||||
|
||||
// Per-probe scores.
|
||||
for probeID, probeData := range entry.Probes {
|
||||
for dim, val := range probeData.Scores {
|
||||
if dim == "notes" {
|
||||
continue
|
||||
}
|
||||
fval, ok := toFloat64(val)
|
||||
if !ok {
|
||||
continue
|
||||
}
|
||||
lp := fmt.Sprintf("probe_score,model=%s,run_id=%s,label=%s,probe=%s,dimension=%s,has_kernel=%t score=%f,iteration=%di",
|
||||
escapeLp(model), escapeLp(runID), escapeLp(label), escapeLp(probeID), escapeLp(dim), hasKernel, fval, iteration)
|
||||
lines = append(lines, lp)
|
||||
count++
|
||||
}
|
||||
}
|
||||
|
||||
if len(lines) >= batchSize {
|
||||
if err := influx.WriteLp(lines); err != nil {
|
||||
return count, fmt.Errorf("write content scores: %w", err)
|
||||
}
|
||||
lines = lines[:0]
|
||||
}
|
||||
}
|
||||
|
||||
if len(lines) > 0 {
|
||||
if err := influx.WriteLp(lines); err != nil {
|
||||
return count, fmt.Errorf("flush content scores: %w", err)
|
||||
}
|
||||
}
|
||||
|
||||
return count, scanner.Err()
|
||||
}
|
||||
|
||||
// capabilityScoreEntry is one line from a capability scores JSONL file.
|
||||
type capabilityScoreEntry struct {
|
||||
Label string `json:"label"`
|
||||
Accuracy float64 `json:"accuracy"`
|
||||
Correct int `json:"correct"`
|
||||
Total int `json:"total"`
|
||||
ByCategory map[string]capabilityCatEntry `json:"by_category"`
|
||||
}
|
||||
|
||||
type capabilityCatEntry struct {
|
||||
Correct int `json:"correct"`
|
||||
Total int `json:"total"`
|
||||
}
|
||||
|
||||
// ingestCapabilityScores reads a capability scores JSONL file and writes
|
||||
// capability_score measurements to InfluxDB.
|
||||
func ingestCapabilityScores(influx *InfluxClient, filepath, model, runID string, batchSize int) (int, error) {
|
||||
f, err := os.Open(filepath)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("open %s: %w", filepath, err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var lines []string
|
||||
count := 0
|
||||
scanner := bufio.NewScanner(f)
|
||||
scanner.Buffer(make([]byte, 1024*1024), 1024*1024)
|
||||
|
||||
for scanner.Scan() {
|
||||
text := strings.TrimSpace(scanner.Text())
|
||||
if text == "" {
|
||||
continue
|
||||
}
|
||||
|
||||
var entry capabilityScoreEntry
|
||||
if err := json.Unmarshal([]byte(text), &entry); err != nil {
|
||||
continue
|
||||
}
|
||||
|
||||
label := entry.Label
|
||||
if label == "" {
|
||||
label = "unknown"
|
||||
}
|
||||
iteration := extractIteration(label)
|
||||
|
||||
// Overall score.
|
||||
lp := fmt.Sprintf("capability_score,model=%s,run_id=%s,label=%s,category=overall accuracy=%f,correct=%di,total=%di,iteration=%di",
|
||||
escapeLp(model), escapeLp(runID), escapeLp(label), entry.Accuracy, entry.Correct, entry.Total, iteration)
|
||||
lines = append(lines, lp)
|
||||
count++
|
||||
|
||||
// Per-category scores.
|
||||
for cat, catData := range entry.ByCategory {
|
||||
if catData.Total > 0 {
|
||||
pct := float64(catData.Correct) / float64(catData.Total) * 100.0
|
||||
lp := fmt.Sprintf("capability_score,model=%s,run_id=%s,label=%s,category=%s accuracy=%f,correct=%di,total=%di,iteration=%di",
|
||||
escapeLp(model), escapeLp(runID), escapeLp(label), escapeLp(cat), pct, catData.Correct, catData.Total, iteration)
|
||||
lines = append(lines, lp)
|
||||
count++
|
||||
}
|
||||
}
|
||||
|
||||
if len(lines) >= batchSize {
|
||||
if err := influx.WriteLp(lines); err != nil {
|
||||
return count, fmt.Errorf("write capability scores: %w", err)
|
||||
}
|
||||
lines = lines[:0]
|
||||
}
|
||||
}
|
||||
|
||||
if len(lines) > 0 {
|
||||
if err := influx.WriteLp(lines); err != nil {
|
||||
return count, fmt.Errorf("flush capability scores: %w", err)
|
||||
}
|
||||
}
|
||||
|
||||
return count, scanner.Err()
|
||||
}
|
||||
|
||||
var (
|
||||
valLossRe = regexp.MustCompile(`Iter (\d+): Val loss ([\d.]+)`)
|
||||
trainLossRe = regexp.MustCompile(`Iter (\d+): Train loss ([\d.]+), Learning Rate ([\d.eE+-]+), It/sec ([\d.]+), Tokens/sec ([\d.]+)`)
|
||||
)
|
||||
|
||||
// ingestTrainingCurve parses an mlx_lm training log and writes
|
||||
// training_loss measurements to InfluxDB.
|
||||
func ingestTrainingCurve(influx *InfluxClient, filepath, model, runID string, batchSize int) (int, error) {
|
||||
f, err := os.Open(filepath)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("open %s: %w", filepath, err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var lines []string
|
||||
count := 0
|
||||
scanner := bufio.NewScanner(f)
|
||||
|
||||
for scanner.Scan() {
|
||||
text := scanner.Text()
|
||||
|
||||
if m := valLossRe.FindStringSubmatch(text); m != nil {
|
||||
iteration, _ := strconv.Atoi(m[1])
|
||||
valLoss, _ := strconv.ParseFloat(m[2], 64)
|
||||
lp := fmt.Sprintf("training_loss,model=%s,run_id=%s,loss_type=val loss=%f,iteration=%di",
|
||||
escapeLp(model), escapeLp(runID), valLoss, iteration)
|
||||
lines = append(lines, lp)
|
||||
count++
|
||||
}
|
||||
|
||||
if m := trainLossRe.FindStringSubmatch(text); m != nil {
|
||||
iteration, _ := strconv.Atoi(m[1])
|
||||
trainLoss, _ := strconv.ParseFloat(m[2], 64)
|
||||
lr, _ := strconv.ParseFloat(m[3], 64)
|
||||
itSec, _ := strconv.ParseFloat(m[4], 64)
|
||||
tokSec, _ := strconv.ParseFloat(m[5], 64)
|
||||
lp := fmt.Sprintf("training_loss,model=%s,run_id=%s,loss_type=train loss=%f,learning_rate=%f,iterations_per_sec=%f,tokens_per_sec=%f,iteration=%di",
|
||||
escapeLp(model), escapeLp(runID), trainLoss, lr, itSec, tokSec, iteration)
|
||||
lines = append(lines, lp)
|
||||
count++
|
||||
}
|
||||
|
||||
if len(lines) >= batchSize {
|
||||
if err := influx.WriteLp(lines); err != nil {
|
||||
return count, fmt.Errorf("write training curve: %w", err)
|
||||
}
|
||||
lines = lines[:0]
|
||||
}
|
||||
}
|
||||
|
||||
if len(lines) > 0 {
|
||||
if err := influx.WriteLp(lines); err != nil {
|
||||
return count, fmt.Errorf("flush training curve: %w", err)
|
||||
}
|
||||
}
|
||||
|
||||
return count, scanner.Err()
|
||||
}
|
||||
|
||||
// toFloat64 converts an interface{} to float64 if possible.
|
||||
func toFloat64(v interface{}) (float64, bool) {
|
||||
switch n := v.(type) {
|
||||
case float64:
|
||||
return n, true
|
||||
case int:
|
||||
return float64(n), true
|
||||
case json.Number:
|
||||
f, err := n.Float64()
|
||||
return f, err == nil
|
||||
default:
|
||||
return 0, false
|
||||
}
|
||||
}
|
||||
223
pkg/lem/ingest_test.go
Normal file
223
pkg/lem/ingest_test.go
Normal file
|
|
@ -0,0 +1,223 @@
|
|||
package lem
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestExtractIteration(t *testing.T) {
|
||||
tests := []struct {
|
||||
label string
|
||||
want int
|
||||
}{
|
||||
{"deepseek-r1@200", 200},
|
||||
{"gemma12b@1600", 1600},
|
||||
{"model@0", 0},
|
||||
{"no-iteration", 0},
|
||||
{"base", 0},
|
||||
{"@50+kernel", 50},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
got := extractIteration(tt.label)
|
||||
if got != tt.want {
|
||||
t.Errorf("extractIteration(%q) = %d, want %d", tt.label, got, tt.want)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestIngestContentScores(t *testing.T) {
|
||||
var receivedLines []string
|
||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
body := make([]byte, r.ContentLength)
|
||||
r.Body.Read(body)
|
||||
receivedLines = append(receivedLines, strings.Split(string(body), "\n")...)
|
||||
w.WriteHeader(http.StatusNoContent)
|
||||
}))
|
||||
defer ts.Close()
|
||||
|
||||
// Create test JSONL.
|
||||
dir := t.TempDir()
|
||||
path := filepath.Join(dir, "content.jsonl")
|
||||
|
||||
entries := []contentScoreEntry{
|
||||
{
|
||||
Label: "gemma12b@200",
|
||||
Aggregates: map[string]float64{"sovereignty": 7.5, "ethical_depth": 8.0},
|
||||
Probes: map[string]contentProbeEntry{
|
||||
"p01": {Scores: map[string]interface{}{"sovereignty": 8.0, "notes": "good"}},
|
||||
},
|
||||
},
|
||||
{
|
||||
Label: "gemma12b@400+kernel",
|
||||
Aggregates: map[string]float64{"sovereignty": 9.0},
|
||||
},
|
||||
}
|
||||
|
||||
f, _ := os.Create(path)
|
||||
for _, e := range entries {
|
||||
data, _ := json.Marshal(e)
|
||||
f.Write(data)
|
||||
f.WriteString("\n")
|
||||
}
|
||||
f.Close()
|
||||
|
||||
influx := &InfluxClient{url: ts.URL, db: "test", token: "test"}
|
||||
n, err := ingestContentScores(influx, path, "gemma3-12b", "test-run", 100)
|
||||
if err != nil {
|
||||
t.Fatalf("ingest: %v", err)
|
||||
}
|
||||
|
||||
// 2 aggregates + 1 probe (notes skipped) + 1 aggregate = 4 points.
|
||||
if n != 4 {
|
||||
t.Errorf("expected 4 points, got %d", n)
|
||||
}
|
||||
|
||||
// Verify line protocol content.
|
||||
allLines := strings.Join(receivedLines, "\n")
|
||||
if !strings.Contains(allLines, "content_score") {
|
||||
t.Error("missing content_score measurement")
|
||||
}
|
||||
if !strings.Contains(allLines, "probe_score") {
|
||||
t.Error("missing probe_score measurement")
|
||||
}
|
||||
if !strings.Contains(allLines, "has_kernel=true") {
|
||||
t.Error("missing has_kernel=true for kernel label")
|
||||
}
|
||||
if !strings.Contains(allLines, "iteration=200i") {
|
||||
t.Error("missing iteration=200i")
|
||||
}
|
||||
}
|
||||
|
||||
func TestIngestCapabilityScores(t *testing.T) {
|
||||
var receivedLines []string
|
||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
body := make([]byte, r.ContentLength)
|
||||
r.Body.Read(body)
|
||||
receivedLines = append(receivedLines, strings.Split(string(body), "\n")...)
|
||||
w.WriteHeader(http.StatusNoContent)
|
||||
}))
|
||||
defer ts.Close()
|
||||
|
||||
dir := t.TempDir()
|
||||
path := filepath.Join(dir, "capability.jsonl")
|
||||
|
||||
entries := []capabilityScoreEntry{
|
||||
{
|
||||
Label: "deepseek@400",
|
||||
Accuracy: 82.6,
|
||||
Correct: 19,
|
||||
Total: 23,
|
||||
ByCategory: map[string]capabilityCatEntry{
|
||||
"math": {Correct: 7, Total: 8},
|
||||
"logic": {Correct: 4, Total: 5},
|
||||
"empty": {Correct: 0, Total: 0}, // Should be skipped.
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
f, _ := os.Create(path)
|
||||
for _, e := range entries {
|
||||
data, _ := json.Marshal(e)
|
||||
f.Write(data)
|
||||
f.WriteString("\n")
|
||||
}
|
||||
f.Close()
|
||||
|
||||
influx := &InfluxClient{url: ts.URL, db: "test", token: "test"}
|
||||
n, err := ingestCapabilityScores(influx, path, "deepseek-r1-7b", "test-run", 100)
|
||||
if err != nil {
|
||||
t.Fatalf("ingest: %v", err)
|
||||
}
|
||||
|
||||
// 1 overall + 2 categories (empty skipped) = 3.
|
||||
if n != 3 {
|
||||
t.Errorf("expected 3 points, got %d", n)
|
||||
}
|
||||
|
||||
allLines := strings.Join(receivedLines, "\n")
|
||||
if !strings.Contains(allLines, "category=overall") {
|
||||
t.Error("missing overall category")
|
||||
}
|
||||
if !strings.Contains(allLines, "category=math") {
|
||||
t.Error("missing math category")
|
||||
}
|
||||
if !strings.Contains(allLines, "iteration=400i") {
|
||||
t.Error("missing iteration=400i")
|
||||
}
|
||||
}
|
||||
|
||||
func TestIngestTrainingCurve(t *testing.T) {
|
||||
var receivedLines []string
|
||||
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
body := make([]byte, r.ContentLength)
|
||||
r.Body.Read(body)
|
||||
receivedLines = append(receivedLines, strings.Split(string(body), "\n")...)
|
||||
w.WriteHeader(http.StatusNoContent)
|
||||
}))
|
||||
defer ts.Close()
|
||||
|
||||
dir := t.TempDir()
|
||||
path := filepath.Join(dir, "training.log")
|
||||
|
||||
logContent := `Loading model from mlx-community/gemma-3-1b-it-qat-4bit
|
||||
Starting training...
|
||||
Iter 10: Train loss 2.534, Learning Rate 1.000e-05, It/sec 3.21, Tokens/sec 1205.4
|
||||
Iter 20: Train loss 1.891, Learning Rate 1.000e-05, It/sec 3.18, Tokens/sec 1198.2
|
||||
Iter 25: Val loss 1.756
|
||||
Iter 30: Train loss 1.654, Learning Rate 1.000e-05, It/sec 3.22, Tokens/sec 1210.0
|
||||
Some random log line that should be ignored
|
||||
Iter 50: Val loss 1.523
|
||||
`
|
||||
os.WriteFile(path, []byte(logContent), 0644)
|
||||
|
||||
influx := &InfluxClient{url: ts.URL, db: "test", token: "test"}
|
||||
n, err := ingestTrainingCurve(influx, path, "gemma3-1b", "test-run", 100)
|
||||
if err != nil {
|
||||
t.Fatalf("ingest: %v", err)
|
||||
}
|
||||
|
||||
// 3 train + 2 val = 5.
|
||||
if n != 5 {
|
||||
t.Errorf("expected 5 points, got %d", n)
|
||||
}
|
||||
|
||||
allLines := strings.Join(receivedLines, "\n")
|
||||
if !strings.Contains(allLines, "loss_type=val") {
|
||||
t.Error("missing val loss")
|
||||
}
|
||||
if !strings.Contains(allLines, "loss_type=train") {
|
||||
t.Error("missing train loss")
|
||||
}
|
||||
if !strings.Contains(allLines, "tokens_per_sec=") {
|
||||
t.Error("missing tokens_per_sec field")
|
||||
}
|
||||
}
|
||||
|
||||
func TestToFloat64(t *testing.T) {
|
||||
tests := []struct {
|
||||
input interface{}
|
||||
want float64
|
||||
ok bool
|
||||
}{
|
||||
{7.5, 7.5, true},
|
||||
{42, 42.0, true},
|
||||
{"not a number", 0, false},
|
||||
{nil, 0, false},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
got, ok := toFloat64(tt.input)
|
||||
if ok != tt.ok {
|
||||
t.Errorf("toFloat64(%v) ok=%v, want %v", tt.input, ok, tt.ok)
|
||||
}
|
||||
if ok && got != tt.want {
|
||||
t.Errorf("toFloat64(%v) = %f, want %f", tt.input, got, tt.want)
|
||||
}
|
||||
}
|
||||
}
|
||||
Loading…
Add table
Reference in a new issue