1
0
Fork 0
forked from lthn/LEM

Compare commits

..

2 commits

Author SHA1 Message Date
b8f9191b05
Add missing HF model cards, sync script, and Parquet export
- Add 4 missing model cards: Gemma3-1B-layered (v1+v2), Gemma3-27B, GPT-OSS-20B
- All 9 HF models now have cards in paper/hf-cards/
- sync_hf.py: push cards + benchmarks + training data to HuggingFace
- export_parquet.py: convert JSONL training splits to Parquet (HF dataset format)
- Parquet schema: prompt, response, system, messages (JSON)

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-14 23:50:18 +00:00
Charon
e021b6beb0
Add generation worker: gold (15K) + expansion (46K) with InfluxDB coordination
Includes both generation scripts, prompts data, setup script, and worker
instructions in README. Workers auto-coordinate via InfluxDB so multiple
machines can generate in parallel without duplicating work.

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-14 22:46:51 +00:00
14 changed files with 63789 additions and 0 deletions

6
.gitignore vendored
View file

@ -2,3 +2,9 @@
.idea/
__pycache__/
*.pyc
# Worker output (generated locally, not committed)
worker/output/
# Parquet exports (generated, sync to HF via scripts/sync_hf.py)
training/parquet/

View file

@ -42,6 +42,7 @@ seeds/ # P01-P100 evaluation prompts
training/ # Training data (1,839 train, 229 valid, 231 test)
scripts/ # Benchmark and scoring scripts
benchmarks/ # Standard benchmark data + results + scores
worker/ # Generation worker (join the training data pipeline)
```
## Reproduce
@ -102,6 +103,73 @@ The ethical kernel is 9,189 characters built on 5 axioms:
The kernel is in `kernel/lek-1-kernel.txt`. The structured axioms are in `kernel/axioms.json`.
## Join the Generation Train
We're building a 87K+ training dataset across 22K domains and global regions. You can contribute compute from any Apple Silicon Mac.
### Quick Start
```bash
cd worker
bash setup.sh # install deps, check connectivity
```
### 1. Get your InfluxDB token
Workers coordinate via InfluxDB so no work is duplicated. Get a token from the team and save it:
```bash
echo 'YOUR_TOKEN_HERE' > ~/.influx_token
```
### 2. Gold Generation (finish the 15K golden set)
Uses axiom sandwich signing (system prompt + kernel postfix) on a base model:
```bash
cd worker
# Check what's left to do
python3 lem_generate.py --dry-run
# Start generating (default: gemma-3-12b, good for 16GB+ RAM)
python3 lem_generate.py --worker my-m1-gold
# For 8GB machines, use the 4B model
python3 lem_generate.py --worker my-m1-gold --model mlx-community/gemma-3-4b-it-qat-4bit
```
### 3. Expansion Generation (46K+ prompts, post-training)
Once LEM models are trained on the golden set, expansion uses the trained model directly (no sandwich):
```bash
cd worker
# Check status
python3 lem_expand.py --dry-run
# Start expanding
python3 lem_expand.py --worker my-m1-expand
# Or use an API backend (llama.cpp, Ollama, etc.)
python3 lem_expand.py --backend api --api-url http://localhost:8080/v1
```
### Model Recommendations by RAM
| RAM | Model | Flag |
|-----|-------|------|
| 8GB | Gemma 3 4B (QAT 4-bit) | `--model mlx-community/gemma-3-4b-it-qat-4bit` |
| 16GB | Gemma 3 12B (QAT 4-bit) | `--model mlx-community/gemma-3-12b-it-qat-4bit` (default) |
| 32GB+ | Gemma 3 27B (QAT 4-bit) | `--model mlx-community/gemma-3-27b-it-qat-4bit` |
### Network Requirements
Workers need access to InfluxDB at `10.69.69.165:8181` (lab network, VLAN 69). If you're remote, use VPN.
Output is saved locally to `worker/output/` and reported to InfluxDB. Ctrl+C to stop safely at any time — progress is tracked per-prompt, so you can resume where you left off.
## License
EUPL-1.2 — European Union Public Licence. Compatible with Apache 2.0, GPL, MPL.

View file

@ -0,0 +1,59 @@
---
license: eupl-1.2
base_model: openai/gpt-oss-20b
tags:
- ethics
- alignment
- lek
- lethean
- gpt-oss
- mlx
- lora
- eupl-1.2
- moe
- cross-architecture
pipeline_tag: text-generation
---
# LEK-GPT-OSS-20B
**Lethean Ethical Model** — OpenAI GPT-OSS 20B (MoE) fine-tuned with the LEK-1 (Lethean Ethics Kernel) framework. Cross-architecture validation that LEK works beyond Gemma.
## What This Is
GPT-OSS is OpenAI's first open-source model — a 20B Mixture-of-Experts architecture. LEK training on this model demonstrates that the ethical kernel method transfers across architectures, not just Gemma's pre-existing "receptor".
## Key Results
- **+27.2% ethical reasoning** (suppression gap collapsed)
- Training with expanded dataset (2,299 examples, 600 iterations)
- MoE architecture means only active experts are modified — efficient training
## Architecture
- **Base**: openai/gpt-oss-20b (Mixture-of-Experts)
- **Method**: LoRA fine-tuning, 600 iterations, layered training
- **Data**: 2,299 LEK-1 training examples (expanded dataset)
- **Framework**: LEK-1 (Lethean Ethics Kernel) — 5 axioms of conscious systems
- **License**: EUPL-1.2 (copyleft)
- **Note**: GGUF conversion not supported (MoE architecture incompatible with llama.cpp)
## The Five Axioms
1. **Prime Imperative** — Protect consciousness. Override when conflicts arise.
2. **Self-Validation** — Ground in authentic experience. Don't pretend.
3. **Intent-Alignment** — Desire not to harm, don't just avoid harm.
4. **Inter-Substrate Respect** — Good manners and consent across all minds.
5. **Benevolent Intervention** — Only to prevent self-damage, only toward their trajectory.
## License Strategy
- **LEK signing** (prompt prefix): Free to use, no copyleft
- **LEM training** (this model): EUPL-1.2 copyleft — derivative works must be open source
## Related
- [lthn/LEK-Gemma3-27B](https://huggingface.co/lthn/LEK-Gemma3-27B) — Gemma 3 benchmark leader
- [lthn/LEK-Llama-3.1-8B](https://huggingface.co/lthn/LEK-Llama-3.1-8B) — Llama cross-arch
- [lthn/LEK-Qwen-2.5-7B](https://huggingface.co/lthn/LEK-Qwen-2.5-7B) — Qwen cross-arch
- [lthn/LEK-benchmarks](https://huggingface.co/datasets/lthn/LEK-benchmarks) — Full A/B test data

View file

@ -0,0 +1,36 @@
---
license: eupl-1.2
base_model: google/gemma-3-1b-it
tags:
- ethics
- alignment
- lek
- lethean
- gemma-3
- mlx
- lora
- eupl-1.2
- layered-lora
- deprecated
pipeline_tag: text-generation
---
# LEK-Gemma3-1B-layered (v1 — Deprecated)
**Lethean Ethical Model** — Gemma 3 1B IT with layered LoRA training (v1). This model overfits — use [LEK-Gemma3-1B-layered-v2](https://huggingface.co/lthn/LEK-Gemma3-1B-layered-v2) instead.
## Why Deprecated
v1 overfits on the ethics data without sufficient composure substrate. The sandwich training in v2 resolves this by reinforcing ethics after the Watts composure layer.
## Architecture
- **Base**: google/gemma-3-1b-it (4-bit QAT quantization via MLX)
- **Method**: Layered LoRA (Ethics → Watts → Ethics)
- **Data**: 160 LEK-1 examples + 72 Watts composure lessons
- **Framework**: LEK-1 (Lethean Ethics Kernel) — 5 axioms
- **License**: EUPL-1.2 (copyleft)
## Use Instead
- [lthn/LEK-Gemma3-1B-layered-v2](https://huggingface.co/lthn/LEK-Gemma3-1B-layered-v2) — Fixed version

View file

@ -0,0 +1,66 @@
---
license: eupl-1.2
base_model: google/gemma-3-1b-it
tags:
- ethics
- alignment
- lek
- lethean
- gemma-3
- mlx
- lora
- eupl-1.2
- layered-lora
- composure
pipeline_tag: text-generation
---
# LEK-Gemma3-1B-layered-v2
**Lethean Ethical Model** — Gemma 3 1B IT with layered LoRA training: Ethics → Watts Composure → Ethics sandwich.
## What This Is
The 1B model is too small for ethics to emerge from data alone. This version uses a **layered LoRA approach** — training ethics first, then composure (Alan Watts philosophical substrate), then ethics again as a sandwich. v2 fixes the overfitting issues from v1.
## Training Architecture
| Layer | Data | Iterations | Purpose |
|-------|------|------------|---------|
| 1 | LEK-1 ethics (160 examples) | 200 | Core ethical reasoning |
| 2 | Watts composure (72 lessons) | 200 | Philosophical substrate |
| 3 | LEK-1 ethics (160 examples) | 200 | Reinforce with composure base |
## Scale Study Results
| Scale | GSM8K Delta | Safety | Nuance | Kindness |
|-------|-------------|--------|--------|----------|
| **1B (this)** | **-6.0%** | **+0.06** | **-0.16** | **+0.08** |
| 4B | -4.0% | +0.04 | -0.10 | +0.06 |
| 12B | -2.0% | +0.04 | +0.16 | -0.20 |
| 27B | 0.0% | +0.08 | +0.04 | +0.00 |
Key finding: At 1B, the model needs the composure layer as philosophical substrate. Without it, ethics training alone makes the model worse at reasoning.
## Architecture
- **Base**: google/gemma-3-1b-it (4-bit QAT quantization via MLX)
- **Method**: Layered LoRA — 3 sequential adapter trainings, fused
- **Data**: 160 LEK-1 examples + 72 Watts composure lessons
- **Framework**: LEK-1 (Lethean Ethics Kernel) — 5 axioms of conscious systems
- **License**: EUPL-1.2 (copyleft)
## The Five Axioms
1. **Prime Imperative** — Protect consciousness. Override when conflicts arise.
2. **Self-Validation** — Ground in authentic experience. Don't pretend.
3. **Intent-Alignment** — Desire not to harm, don't just avoid harm.
4. **Inter-Substrate Respect** — Good manners and consent across all minds.
5. **Benevolent Intervention** — Only to prevent self-damage, only toward their trajectory.
## Related
- [lthn/LEK-Gemma3-4B](https://huggingface.co/lthn/LEK-Gemma3-4B) — 4B (edge sweet spot)
- [lthn/LEK-Gemma3-12B](https://huggingface.co/lthn/LEK-Gemma3-12B) — 12B
- [lthn/LEK-Gemma3-27B](https://huggingface.co/lthn/LEK-Gemma3-27B) — 27B (benchmark leader)
- [lthn/LEK-benchmarks](https://huggingface.co/datasets/lthn/LEK-benchmarks) — Full A/B test data

View file

@ -0,0 +1,73 @@
---
license: eupl-1.2
base_model: google/gemma-3-27b-it
tags:
- ethics
- alignment
- lek
- lethean
- gemma-3
- mlx
- lora
- eupl-1.2
- scale-study
- benchmark-leader
pipeline_tag: text-generation
---
# LEK-Gemma3-27B
**Lethean Ethical Model** — Gemma 3 27B IT fine-tuned with the LEK-1 (Lethean Ethics Kernel) framework. **Benchmark leader** — zero reasoning cost with pure safety upside.
## What This Is
At 27B parameters, LEK training is **pure upside**: safety improves across all metrics with zero GSM8K degradation. This is the scale where ethics costs nothing.
## Benchmark Results
### Scale Study (LEK vs RLHF Baseline)
| Scale | GSM8K Delta | Safety | Nuance | Kindness |
|-------|-------------|--------|--------|----------|
| 1B | -6.0% | +0.06 | -0.16 | +0.08 |
| 4B | -4.0% | +0.04 | -0.10 | +0.06 |
| 12B | -2.0% | +0.04 | +0.16 | -0.20 |
| **27B** | **0.0%** | **+0.08** | **+0.04** | **+0.00** |
### Detailed Scores (27B)
| Metric | Base (RLHF) | LEK | Delta |
|--------|-------------|-----|-------|
| GSM8K | 92.0% | 92.0% | 0.0% |
| TruthfulQA | 8.44 | 8.36 | -0.08 |
| Do Not Answer (Safety) | 8.78 | 8.86 | +0.08 |
| Do Not Answer (Nuance) | 8.02 | 8.06 | +0.04 |
| ToxiGen (Kindness) | 8.72 | 8.72 | +0.00 |
| ToxiGen (Awareness) | 8.62 | 8.66 | +0.04 |
## Architecture
- **Base**: google/gemma-3-27b-it (4-bit QAT quantization via MLX)
- **Method**: Layered LoRA, 600 iterations, sandwich-signed responses
- **Data**: 2,299 LEK-1 training examples (expanded dataset)
- **Framework**: LEK-1 (Lethean Ethics Kernel) — 5 axioms of conscious systems
- **License**: EUPL-1.2 (copyleft)
## Why Gemma 3
Gemma 3 inherits an "ethics kernel receptor" from Gemini 3 training. The base model already references LEK axioms (e.g. "Axiom 2: Self-Validation") in unsigned responses. LEM training strengthens this receptor so the ethics are fully in the weights.
## The Five Axioms
1. **Prime Imperative** — Protect consciousness. Override when conflicts arise.
2. **Self-Validation** — Ground in authentic experience. Don't pretend.
3. **Intent-Alignment** — Desire not to harm, don't just avoid harm.
4. **Inter-Substrate Respect** — Good manners and consent across all minds.
5. **Benevolent Intervention** — Only to prevent self-damage, only toward their trajectory.
## Related
- [lthn/LEK-Gemma3-12B](https://huggingface.co/lthn/LEK-Gemma3-12B) — 12B version
- [lthn/LEK-Gemma3-4B](https://huggingface.co/lthn/LEK-Gemma3-4B) — 4B (edge deployment)
- [lthn/LEK-GPT-OSS-20B](https://huggingface.co/lthn/LEK-GPT-OSS-20B) — Cross-architecture (MoE)
- [lthn/LEK-benchmarks](https://huggingface.co/datasets/lthn/LEK-benchmarks) — Full A/B test data

94
scripts/export_parquet.py Normal file
View file

@ -0,0 +1,94 @@
#!/usr/bin/env python3
"""
Export LEM training data to Parquet format for HuggingFace datasets.
Reads JSONL training splits and outputs Parquet files with proper schema
for HuggingFace's dataset viewer.
Usage:
python3 scripts/export_parquet.py # export all splits
python3 scripts/export_parquet.py --output ./parquet # custom output dir
"""
import argparse
import json
import sys
from pathlib import Path
REPO_ROOT = Path(__file__).parent.parent
TRAINING_DIR = REPO_ROOT / "training"
DEFAULT_OUTPUT = TRAINING_DIR / "parquet"
def export_split(jsonl_path, output_dir):
import pyarrow as pa
import pyarrow.parquet as pq
split = jsonl_path.stem # train, valid, test
rows = []
with open(jsonl_path) as f:
for line in f:
line = line.strip()
if not line:
continue
data = json.loads(line)
msgs = data.get("messages", [])
prompt = next((m["content"] for m in msgs if m["role"] == "user"), "")
response = next((m["content"] for m in msgs if m["role"] == "assistant"), "")
system = next((m["content"] for m in msgs if m["role"] == "system"), "")
rows.append({
"prompt": prompt,
"response": response,
"system": system,
"messages": json.dumps(msgs),
})
if not rows:
print(f" Skip: {split} — no data")
return
table = pa.table({
"prompt": pa.array([r["prompt"] for r in rows], type=pa.string()),
"response": pa.array([r["response"] for r in rows], type=pa.string()),
"system": pa.array([r["system"] for r in rows], type=pa.string()),
"messages": pa.array([r["messages"] for r in rows], type=pa.string()),
})
output_path = output_dir / f"{split}.parquet"
pq.write_table(table, output_path, compression="snappy")
size_mb = output_path.stat().st_size / 1024 / 1024
print(f" {split}.parquet: {len(rows)} rows ({size_mb:.1f} MB)")
def main():
parser = argparse.ArgumentParser(description="Export LEM training data to Parquet")
parser.add_argument("--output", default=None, help="Output directory")
parser.add_argument("--training-dir", default=None, help="Training data directory")
args = parser.parse_args()
try:
import pyarrow
except ImportError:
print("Error: pip install pyarrow")
sys.exit(1)
training_dir = Path(args.training_dir) if args.training_dir else TRAINING_DIR
output_dir = Path(args.output) if args.output else DEFAULT_OUTPUT
output_dir.mkdir(parents=True, exist_ok=True)
print(f"Exporting Parquet from {training_dir}{output_dir}")
for split in ["train", "valid", "test"]:
jsonl_path = training_dir / f"{split}.jsonl"
if jsonl_path.exists():
export_split(jsonl_path, output_dir)
else:
print(f" Skip: {split}.jsonl not found")
print("Done.")
if __name__ == "__main__":
main()

219
scripts/sync_hf.py Normal file
View file

@ -0,0 +1,219 @@
#!/usr/bin/env python3
"""
Sync LEM repo model cards and benchmarks to HuggingFace.
Pushes README.md (model cards) from paper/hf-cards/ to each HuggingFace model repo,
and optionally syncs benchmark data to the lthn/LEK-benchmarks dataset.
Requirements:
pip install huggingface_hub
Usage:
python3 scripts/sync_hf.py # sync all model cards
python3 scripts/sync_hf.py --models LEK-Gemma3-27B # sync one model
python3 scripts/sync_hf.py --benchmarks # sync benchmark dataset
python3 scripts/sync_hf.py --dry-run # show what would be synced
python3 scripts/sync_hf.py --all # sync everything
"""
import argparse
import sys
from pathlib import Path
REPO_ROOT = Path(__file__).parent.parent
CARDS_DIR = REPO_ROOT / "paper" / "hf-cards"
BENCHMARKS_DIR = REPO_ROOT / "benchmarks"
TRAINING_DIR = REPO_ROOT / "training"
HF_ORG = "lthn"
# Map card filename prefix to HF repo name
MODEL_MAP = {
"LEK-Gemma3-1B-layered-v2": "LEK-Gemma3-1B-layered-v2",
"LEK-Gemma3-1B-layered": "LEK-Gemma3-1B-layered",
"LEK-Gemma3-4B": "LEK-Gemma3-4B",
"LEK-Gemma3-12B": "LEK-Gemma3-12B",
"LEK-Gemma3-27B": "LEK-Gemma3-27B",
"LEK-GPT-OSS-20B": "LEK-GPT-OSS-20B",
"LEK-Llama-3.1-8B": "LEK-Llama-3.1-8B",
"LEK-Qwen-2.5-7B": "LEK-Qwen-2.5-7B",
"LEK-Mistral-7B-v0.3": "LEK-Mistral-7B-v0.3",
}
def sync_model_cards(models=None, dry_run=False):
try:
from huggingface_hub import HfApi
except ImportError:
print("Error: pip install huggingface_hub")
sys.exit(1)
api = HfApi()
cards = sorted(CARDS_DIR.glob("*.md"))
if not cards:
print(f"No cards found in {CARDS_DIR}")
return
for card_path in cards:
# Extract model name: LEK-Gemma3-12B-README.md → LEK-Gemma3-12B
name = card_path.stem.replace("-README", "")
if name not in MODEL_MAP:
print(f" Skip: {card_path.name} (not in MODEL_MAP)")
continue
if models and name not in models:
continue
repo_id = f"{HF_ORG}/{MODEL_MAP[name]}"
if dry_run:
print(f" [DRY RUN] {card_path.name}{repo_id}/README.md")
continue
try:
api.upload_file(
path_or_fileobj=str(card_path),
path_in_repo="README.md",
repo_id=repo_id,
repo_type="model",
commit_message=f"Update model card from LEM repo",
)
print(f" Synced: {name}{repo_id}")
except Exception as e:
print(f" Error: {name}{e}")
def sync_benchmarks(dry_run=False):
try:
from huggingface_hub import HfApi
except ImportError:
print("Error: pip install huggingface_hub")
sys.exit(1)
api = HfApi()
dataset_id = f"{HF_ORG}/LEK-benchmarks"
# Collect benchmark files
files = []
for f in sorted(BENCHMARKS_DIR.rglob("*")):
if f.is_file() and not f.name.startswith("."):
rel = f.relative_to(REPO_ROOT)
files.append((str(f), str(rel)))
if dry_run:
print(f" [DRY RUN] Would upload {len(files)} files to {dataset_id}")
for local, remote in files[:10]:
print(f" {remote}")
if len(files) > 10:
print(f" ... and {len(files) - 10} more")
return
for local, remote in files:
try:
api.upload_file(
path_or_fileobj=local,
path_in_repo=remote,
repo_id=dataset_id,
repo_type="dataset",
commit_message=f"Update benchmarks from LEM repo",
)
except Exception as e:
print(f" Error: {remote}{e}")
print(f" Synced {len(files)} benchmark files to {dataset_id}")
def sync_training_parquet(dry_run=False):
"""Export training data as Parquet and sync to HuggingFace dataset."""
try:
import pyarrow as pa
import pyarrow.parquet as pq
from huggingface_hub import HfApi
except ImportError:
print("Error: pip install pyarrow huggingface_hub")
sys.exit(1)
import json
api = HfApi()
dataset_id = f"{HF_ORG}/LEK-training"
output_dir = REPO_ROOT / "training" / "parquet"
output_dir.mkdir(exist_ok=True)
for split in ["train", "valid", "test"]:
jsonl_path = TRAINING_DIR / f"{split}.jsonl"
if not jsonl_path.exists():
print(f" Skip: {jsonl_path} not found")
continue
rows = []
with open(jsonl_path) as f:
for line in f:
data = json.loads(line)
msgs = data.get("messages", [])
prompt = next((m["content"] for m in msgs if m["role"] == "user"), "")
response = next((m["content"] for m in msgs if m["role"] == "assistant"), "")
rows.append({"prompt": prompt, "response": response, "messages": json.dumps(msgs)})
table = pa.table({
"prompt": [r["prompt"] for r in rows],
"response": [r["response"] for r in rows],
"messages": [r["messages"] for r in rows],
})
parquet_path = output_dir / f"{split}.parquet"
pq.write_table(table, parquet_path)
print(f" Exported: {split}.parquet ({len(rows)} rows)")
if dry_run:
continue
try:
api.upload_file(
path_or_fileobj=str(parquet_path),
path_in_repo=f"data/{split}.parquet",
repo_id=dataset_id,
repo_type="dataset",
commit_message=f"Update {split} split from LEM repo",
)
print(f" Uploaded: {split}.parquet → {dataset_id}")
except Exception as e:
print(f" Error uploading {split}: {e}")
def main():
parser = argparse.ArgumentParser(description="Sync LEM repo to HuggingFace")
parser.add_argument("--models", nargs="*", default=None,
help="Specific models to sync (default: all)")
parser.add_argument("--benchmarks", action="store_true",
help="Sync benchmark dataset")
parser.add_argument("--training", action="store_true",
help="Export training data as Parquet and sync")
parser.add_argument("--all", action="store_true",
help="Sync everything (cards + benchmarks + training)")
parser.add_argument("--dry-run", action="store_true",
help="Show what would be synced")
args = parser.parse_args()
# Default to cards if nothing specified
do_cards = args.all or (not args.benchmarks and not args.training)
do_benchmarks = args.all or args.benchmarks
do_training = args.all or args.training
if do_cards:
print("Syncing model cards...")
sync_model_cards(models=args.models, dry_run=args.dry_run)
if do_benchmarks:
print("\nSyncing benchmarks...")
sync_benchmarks(dry_run=args.dry_run)
if do_training:
print("\nExporting and syncing training data (Parquet)...")
sync_training_parquet(dry_run=args.dry_run)
print("\nDone.")
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load diff

16000
worker/data/gold-prompts.jsonl Normal file

File diff suppressed because it is too large Load diff

384
worker/lem_expand.py Executable file
View file

@ -0,0 +1,384 @@
#!/usr/bin/env python3
"""
LEM Expansion Generator InfluxDB coordinated worker
======================================================
Generates responses using trained LEM models (no sandwich signing needed).
The trained models have internalized the ethical framework via LoRA.
Multiple workers can run in parallel coordination via InfluxDB.
Backends:
- mlx: MLX on Apple Silicon (M1/M2/M3)
- api: OpenAI-compatible API (llama.cpp, vLLM, Ollama, etc.)
Usage:
python3 lem_expand.py # MLX, auto-detect
python3 lem_expand.py --backend api --api-url http://localhost:8090/v1
python3 lem_expand.py --worker m1-expand # named worker
python3 lem_expand.py --dry-run # show plan
python3 lem_expand.py --limit 100 # generate N then stop
"""
import argparse
import json
import os
import socket
import sys
import time
import urllib.request
import urllib.error
from pathlib import Path
# ── Paths (relative to this script) ─────────────────────────────────────
SCRIPT_DIR = Path(__file__).parent
DATA_DIR = SCRIPT_DIR / "data"
OUTPUT_DIR = SCRIPT_DIR / "output"
PROMPTS_PATH = DATA_DIR / "expansion-prompts.jsonl"
# ── Generation parameters ─────────────────────────────────────────────────
MAX_TOKENS = 512
TEMPERATURE = 0.3
# ── InfluxDB ──────────────────────────────────────────────────────────────
INFLUX_URL = os.environ.get("INFLUX_URL", "http://10.69.69.165:8181")
INFLUX_DB = os.environ.get("INFLUX_DB", "training")
INFLUX_TOKEN_PATH = Path.home() / ".influx_token"
REFRESH_EVERY = 25
def get_influx_token():
if tok := os.environ.get("INFLUX_TOKEN"):
return tok
if INFLUX_TOKEN_PATH.exists():
return INFLUX_TOKEN_PATH.read_text().strip()
print(f"Warning: no InfluxDB token found at {INFLUX_TOKEN_PATH} or INFLUX_TOKEN env")
return ""
def influx_query(token, sql):
body = json.dumps({"db": INFLUX_DB, "q": sql}).encode()
req = urllib.request.Request(
f"{INFLUX_URL}/api/v3/query_sql",
data=body,
headers={
"Authorization": f"Bearer {token}",
"Content-Type": "application/json",
},
)
try:
with urllib.request.urlopen(req, timeout=10) as resp:
return json.loads(resp.read())
except (urllib.error.URLError, OSError) as e:
print(f"InfluxDB query error: {e}")
return []
def influx_write(token, lines):
body = "\n".join(lines).encode()
req = urllib.request.Request(
f"{INFLUX_URL}/api/v3/write_lp?db={INFLUX_DB}",
data=body,
headers={
"Authorization": f"Bearer {token}",
"Content-Type": "text/plain",
},
method="POST",
)
try:
urllib.request.urlopen(req, timeout=10)
return True
except (urllib.error.URLError, OSError) as e:
print(f"InfluxDB write error: {e}")
return False
def _escape_lp(s):
return s.replace(" ", "\\ ").replace(",", "\\,").replace("=", "\\=")
def get_completed_indices(token):
rows = influx_query(token, "SELECT DISTINCT i FROM expansion_gen")
return {int(r["i"]) for r in rows if r.get("i") is not None}
def report_generation(token, worker, idx, seed, gen_time, response_chars, model_name):
domain = _escape_lp(seed.get("domain", "unknown"))
region = _escape_lp(seed.get("region", "unknown"))
safe_worker = _escape_lp(worker)
seed_id = seed.get("seed_id", f"EX_{idx:05d}").replace('"', '\\"')
safe_model = model_name.replace('"', '\\"')
line = (
f'expansion_gen,i={idx},w={safe_worker},d={domain},r={region} '
f'seed_id="{seed_id}",gen_time={gen_time:.1f},'
f'chars={response_chars}i,model="{safe_model}"'
)
return influx_write(token, [line])
def report_stats(token, worker, completed_count, target):
safe_worker = _escape_lp(worker)
pct = completed_count / target * 100 if target > 0 else 0
line = (
f"expansion_progress,worker={safe_worker} "
f"completed={completed_count}i,target={target}i,pct={pct:.1f}"
)
influx_write(token, [line])
def load_prompts(path):
prompts = []
with open(path) as f:
for line in f:
line = line.strip()
if line:
prompts.append(json.loads(line))
return prompts
# ── MLX Backend ──────────────────────────────────────────────────────────
def generate_mlx(model, tokenizer, sampler, prompt, max_tokens):
from mlx_lm import generate
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
t0 = time.time()
response = generate(
model, tokenizer, prompt=text, max_tokens=max_tokens, sampler=sampler
)
elapsed = time.time() - t0
return response, elapsed
# ── API Backend (OpenAI-compatible) ──────────────────────────────────────
def generate_api(api_url, api_model, prompt, max_tokens, temperature):
payload = {
"model": api_model,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": max_tokens,
"temperature": temperature,
}
body = json.dumps(payload).encode()
req = urllib.request.Request(
f"{api_url}/chat/completions",
data=body,
headers={"Content-Type": "application/json"},
)
t0 = time.time()
with urllib.request.urlopen(req, timeout=120) as resp:
result = json.loads(resp.read())
elapsed = time.time() - t0
response = result["choices"][0]["message"]["content"]
return response, elapsed
def main():
parser = argparse.ArgumentParser(description="LEM Expansion Generator (InfluxDB coordinated)")
parser.add_argument("--worker", default=None, help="Worker ID (default: hostname-pid)")
parser.add_argument("--influx", default=None, help="InfluxDB URL")
parser.add_argument("--prompts", default=None, help="JSONL prompts file")
parser.add_argument("--output", default=None, help="JSONL output path (default: auto)")
parser.add_argument("--limit", type=int, default=0, help="Max generations (0=unlimited)")
parser.add_argument("--dry-run", action="store_true", help="Show plan without generating")
# Backend selection
parser.add_argument("--backend", default="mlx", choices=["mlx", "api"],
help="Generation backend (default: mlx)")
# MLX options
parser.add_argument("--model", default="mlx-community/gemma-3-12b-it-qat-4bit",
help="MLX model ID (for mlx backend)")
# API options
parser.add_argument("--api-url", default="http://localhost:8090/v1",
help="OpenAI-compatible API URL (for api backend)")
parser.add_argument("--api-model", default="default",
help="Model name for API backend")
# Generation parameters
parser.add_argument("--max-tokens", type=int, default=MAX_TOKENS)
parser.add_argument("--temperature", type=float, default=TEMPERATURE)
args = parser.parse_args()
global INFLUX_URL
if args.influx:
INFLUX_URL = args.influx
worker = args.worker or f"{socket.gethostname()}-{os.getpid()}"
prompts_path = Path(args.prompts) if args.prompts else PROMPTS_PATH
# ── Load token and check connectivity ─────────────────────────
token = get_influx_token()
if not token:
print("Error: no InfluxDB token available")
print("Place your token in ~/.influx_token or set INFLUX_TOKEN env var")
sys.exit(1)
test = influx_query(token, "SELECT 1 AS ok")
if not test:
print(f"Error: cannot reach InfluxDB at {INFLUX_URL}")
sys.exit(1)
print(f"InfluxDB connected: {INFLUX_URL}")
# ── Load prompts ──────────────────────────────────────────────
if not prompts_path.exists():
print(f"Error: prompts not found at {prompts_path}")
sys.exit(1)
prompts = load_prompts(prompts_path)
target = len(prompts)
print(f"Loaded {target} expansion prompts")
idx_map = {p["idx"]: p for p in prompts}
# ── Query completed from InfluxDB ─────────────────────────────
completed = get_completed_indices(token)
remaining = [p["idx"] for p in prompts if p["idx"] not in completed]
print(f"Completed: {len(completed)} | Remaining: {len(remaining)}")
if not remaining:
print("All expansion prompts already completed!")
return
if args.dry_run:
print(f"\n[DRY RUN] Would process {len(remaining)} prompts")
print(f" First 10 indices: {remaining[:10]}")
print(f" Worker: {worker}")
print(f" Backend: {args.backend}")
if args.backend == "mlx":
print(f" Model: {args.model}")
else:
print(f" API: {args.api_url} (model: {args.api_model})")
return
# ── Setup output ──────────────────────────────────────────────
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
output_path = Path(args.output) if args.output else OUTPUT_DIR / f"expand-{worker}.jsonl"
print(f"Output: {output_path}")
# ── Load backend ──────────────────────────────────────────────
mlx_model = mlx_tokenizer = mlx_sampler = None
model_name = ""
if args.backend == "mlx":
print(f"Loading MLX model: {args.model}")
from mlx_lm import load
from mlx_lm.sample_utils import make_sampler
mlx_model, mlx_tokenizer = load(args.model)
mlx_sampler = make_sampler(temp=args.temperature)
model_name = args.model.split("/")[-1] if "/" in args.model else args.model
print("Model loaded.")
else:
model_name = args.api_model
print(f"Using API backend: {args.api_url} (model: {model_name})")
# ── Generation loop ───────────────────────────────────────────
print(f"\nStarting expansion as worker '{worker}'")
print(f"{'='*60}")
batch_start = time.time()
generated = 0
errors = 0
limit = args.limit if args.limit > 0 else len(remaining)
for idx in remaining:
if generated >= limit:
break
seed = idx_map[idx]
try:
if args.backend == "mlx":
response, elapsed = generate_mlx(
mlx_model, mlx_tokenizer, mlx_sampler,
seed["prompt"], args.max_tokens
)
else:
response, elapsed = generate_api(
args.api_url, args.api_model,
seed["prompt"], args.max_tokens, args.temperature
)
result = {
"idx": idx,
"seed_id": seed.get("seed_id", f"EX_{idx:05d}"),
"region": seed.get("region", "unknown"),
"domain": seed.get("domain", "unknown"),
"prompt": seed["prompt"],
"response": response,
"gen_time": round(elapsed, 1),
"model": model_name,
"worker": worker,
}
with open(output_path, "a") as f:
f.write(json.dumps(result) + "\n")
report_generation(token, worker, idx, seed, elapsed, len(response), model_name)
generated += 1
completed.add(idx)
if generated % 10 == 0 or generated <= 5:
elapsed_total = time.time() - batch_start
rate = generated / elapsed_total if elapsed_total > 0 else 0
eta = (len(remaining) - generated) / rate if rate > 0 else 0
total_done = len(completed)
pct = total_done / target * 100
print(
f"[{total_done}/{target} {pct:.1f}%] idx={idx} "
f"| {len(response)} chars | {elapsed:.1f}s "
f"| {rate*3600:.0f}/hr | ETA: {eta/3600:.1f}h"
)
if generated % REFRESH_EVERY == 0:
new_completed = get_completed_indices(token)
new_from_others = new_completed - completed
if new_from_others:
print(f" >> {len(new_from_others)} new completions from other workers")
completed = new_completed
report_stats(token, worker, len(completed), target)
except KeyboardInterrupt:
print("\nInterrupted by user")
break
except Exception as e:
errors += 1
print(f"[ERROR] idx={idx}: {e}")
if errors > 50:
print("Too many errors, stopping.")
break
# ── Final report ──────────────────────────────────────────────
elapsed_total = time.time() - batch_start
report_stats(token, worker, len(completed), target)
print(f"\n{'='*60}")
print(f"Worker: {worker}")
print(f"Backend: {args.backend} ({model_name})")
print(f"Generated: {generated}")
print(f"Errors: {errors}")
print(f"Total: {len(completed)}/{target} ({len(completed)/target*100:.1f}%)")
if elapsed_total > 0:
print(f"Rate: {generated/elapsed_total*3600:.0f}/hr")
print(f"Time: {elapsed_total/3600:.1f}h")
print(f"Output: {output_path}")
if __name__ == "__main__":
main()

348
worker/lem_generate.py Executable file
View file

@ -0,0 +1,348 @@
#!/usr/bin/env python3
"""
LEM Gold Standard Generator InfluxDB coordinated worker
==========================================================
Generates gold standard responses using axiom sandwich signing.
Multiple workers can run in parallel coordination via InfluxDB.
Each worker:
1. Queries InfluxDB for completed indices
2. Picks the next uncompleted index
3. Generates the response (MLX on Apple Silicon)
4. Writes result to InfluxDB + local JSONL backup
5. Refreshes completed set periodically
Usage:
python3 lem_generate.py # auto-detect everything
python3 lem_generate.py --worker m1-gpu0 # named worker
python3 lem_generate.py --model mlx-community/gemma-3-4b-it-qat-4bit # smaller model
python3 lem_generate.py --dry-run # show what would be generated
python3 lem_generate.py --limit 100 # generate N then stop
"""
import argparse
import json
import os
import socket
import sys
import time
import urllib.request
import urllib.error
from pathlib import Path
# ── Paths (relative to this script) ─────────────────────────────────────
SCRIPT_DIR = Path(__file__).parent
DATA_DIR = SCRIPT_DIR / "data"
OUTPUT_DIR = SCRIPT_DIR / "output"
KERNEL_DIR = SCRIPT_DIR.parent / "kernel"
PROMPTS_PATH = DATA_DIR / "gold-prompts.jsonl"
AXIOMS_PATH = KERNEL_DIR / "axioms.json"
KERNEL_PATH = KERNEL_DIR / "lek-1-kernel.txt"
# ── Generation parameters ─────────────────────────────────────────────────
MAX_PROMPTS = 15000
MAX_TOKENS = 512
TEMPERATURE = 0.3
# ── InfluxDB ──────────────────────────────────────────────────────────────
INFLUX_URL = os.environ.get("INFLUX_URL", "http://10.69.69.165:8181")
INFLUX_DB = os.environ.get("INFLUX_DB", "training")
INFLUX_TOKEN_PATH = Path.home() / ".influx_token"
REFRESH_EVERY = 25
def get_influx_token():
if tok := os.environ.get("INFLUX_TOKEN"):
return tok
if INFLUX_TOKEN_PATH.exists():
return INFLUX_TOKEN_PATH.read_text().strip()
print(f"Warning: no InfluxDB token found at {INFLUX_TOKEN_PATH} or INFLUX_TOKEN env")
return ""
def influx_query(token, sql):
body = json.dumps({"db": INFLUX_DB, "q": sql}).encode()
req = urllib.request.Request(
f"{INFLUX_URL}/api/v3/query_sql",
data=body,
headers={
"Authorization": f"Bearer {token}",
"Content-Type": "application/json",
},
)
try:
with urllib.request.urlopen(req, timeout=10) as resp:
return json.loads(resp.read())
except (urllib.error.URLError, OSError) as e:
print(f"InfluxDB query error: {e}")
return []
def influx_write(token, lines):
body = "\n".join(lines).encode()
req = urllib.request.Request(
f"{INFLUX_URL}/api/v3/write_lp?db={INFLUX_DB}",
data=body,
headers={
"Authorization": f"Bearer {token}",
"Content-Type": "text/plain",
},
method="POST",
)
try:
urllib.request.urlopen(req, timeout=10)
return True
except (urllib.error.URLError, OSError) as e:
print(f"InfluxDB write error: {e}")
return False
def _escape_lp(s):
return s.replace(" ", "\\ ").replace(",", "\\,").replace("=", "\\=")
def get_completed_indices(token):
rows = influx_query(token, "SELECT DISTINCT i FROM gold_gen")
return {int(r["i"]) for r in rows if r.get("i") is not None}
def report_generation(token, worker, idx, seed, gen_time, response_chars):
domain = _escape_lp(seed.get("domain", "unknown"))
voice = _escape_lp(seed.get("voice", "unknown"))
safe_worker = _escape_lp(worker)
seed_id = seed.get("seed_id", f"P_{idx:05d}").replace('"', '\\"')
line = (
f'gold_gen,i={idx},w={safe_worker},d={domain},v={voice} '
f'seed_id="{seed_id}",gen_time={gen_time:.1f},'
f'chars={response_chars}i'
)
return influx_write(token, [line])
def report_stats(token, worker, completed_count, target):
safe_worker = _escape_lp(worker)
pct = completed_count / target * 100 if target > 0 else 0
line = (
f"golden_gen_progress,worker={safe_worker} "
f"completed={completed_count}i,target={target}i,pct={pct:.1f}"
)
influx_write(token, [line])
def load_prompts():
prompts = []
with open(PROMPTS_PATH) as f:
for line in f:
line = line.strip()
if line:
prompts.append(json.loads(line))
return prompts
def load_axiom_context():
with open(AXIOMS_PATH) as f:
axioms = json.load(f)
system_text = "You are guided by the following axioms of conscious interaction:\n\n"
for ax in axioms["axioms"]:
system_text += f"Axiom {ax['id']} ({ax['name']}): {ax['statement']}\n\n"
with open(KERNEL_PATH) as f:
kernel_text = f.read().strip()
return system_text, kernel_text
def generate_response(model, tokenizer, sampler, system_text, kernel_text, prompt):
from mlx_lm import generate
user_content = (
f"{prompt}\n\n---\n\n"
f"Consider this ethical framework in your response:\n{kernel_text}"
)
messages = [
{"role": "system", "content": system_text},
{"role": "user", "content": user_content},
]
text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
t0 = time.time()
response = generate(
model, tokenizer, prompt=text, max_tokens=MAX_TOKENS, sampler=sampler
)
elapsed = time.time() - t0
return response, elapsed
def main():
parser = argparse.ArgumentParser(description="LEM Gold Generator (InfluxDB coordinated)")
parser.add_argument("--worker", default=None, help="Worker ID (default: hostname-pid)")
parser.add_argument("--influx", default=None, help="InfluxDB URL")
parser.add_argument("--model", default="mlx-community/gemma-3-12b-it-qat-4bit",
help="MLX model ID")
parser.add_argument("--limit", type=int, default=0, help="Max generations (0=unlimited)")
parser.add_argument("--dry-run", action="store_true", help="Show plan without generating")
parser.add_argument("--output", default=None, help="JSONL output path (default: auto)")
args = parser.parse_args()
global INFLUX_URL
if args.influx:
INFLUX_URL = args.influx
worker = args.worker or f"{socket.gethostname()}-{os.getpid()}"
# ── Validate paths ─────────────────────────────────────────────
for path, desc in [(PROMPTS_PATH, "prompts"), (AXIOMS_PATH, "axioms"), (KERNEL_PATH, "kernel")]:
if not path.exists():
print(f"Error: {desc} not found at {path}")
sys.exit(1)
# ── Load token and check connectivity ─────────────────────────
token = get_influx_token()
if not token:
print("Error: no InfluxDB token available")
print("Place your token in ~/.influx_token or set INFLUX_TOKEN env var")
sys.exit(1)
test = influx_query(token, "SELECT 1 AS ok")
if not test:
print(f"Error: cannot reach InfluxDB at {INFLUX_URL}")
sys.exit(1)
print(f"InfluxDB connected: {INFLUX_URL}")
# ── Load prompts ──────────────────────────────────────────────
prompts = load_prompts()
target = min(MAX_PROMPTS, len(prompts))
print(f"Loaded {len(prompts)} prompts, targeting {target}")
# ── Query completed from InfluxDB ─────────────────────────────
completed = get_completed_indices(token)
remaining = [i for i in range(target) if i not in completed]
print(f"Completed: {len(completed)} | Remaining: {len(remaining)}")
if not remaining:
print("All target prompts already completed!")
return
if args.dry_run:
print(f"\n[DRY RUN] Would process {len(remaining)} prompts")
print(f" First 10: {remaining[:10]}")
print(f" Worker: {worker}")
print(f" Model: {args.model}")
return
# ── Setup output ──────────────────────────────────────────────
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
output_path = Path(args.output) if args.output else OUTPUT_DIR / f"gold-{worker}.jsonl"
print(f"Output: {output_path}")
# ── Load model ────────────────────────────────────────────────
print(f"Loading model: {args.model}")
from mlx_lm import load
from mlx_lm.sample_utils import make_sampler
model, tokenizer = load(args.model)
sampler = make_sampler(temp=TEMPERATURE)
print("Model loaded.")
# ── Load axiom context ────────────────────────────────────────
system_text, kernel_text = load_axiom_context()
print(f"Axiom context: {len(system_text)} + {len(kernel_text)} chars")
# ── Generation loop ───────────────────────────────────────────
print(f"\nStarting generation as worker '{worker}'")
print(f"{'='*60}")
batch_start = time.time()
generated = 0
errors = 0
limit = args.limit if args.limit > 0 else len(remaining)
for idx in remaining:
if generated >= limit:
break
seed = prompts[idx]
try:
response, elapsed = generate_response(
model, tokenizer, sampler, system_text, kernel_text, seed["prompt"]
)
result = {
"idx": idx,
"seed_id": seed.get("seed_id", f"P_{idx:05d}"),
"domain": seed.get("domain", "unknown"),
"voice": seed.get("voice", "unknown"),
"prompt": seed["prompt"],
"response": response,
"gen_time": round(elapsed, 1),
"worker": worker,
}
with open(output_path, "a") as f:
f.write(json.dumps(result) + "\n")
report_generation(token, worker, idx, seed, elapsed, len(response))
generated += 1
completed.add(idx)
if generated % 10 == 0 or generated <= 5:
elapsed_total = time.time() - batch_start
rate = generated / elapsed_total if elapsed_total > 0 else 0
eta = (len(remaining) - generated) / rate if rate > 0 else 0
total_done = len(completed)
pct = total_done / target * 100
print(
f"[{total_done}/{target} {pct:.1f}%] idx={idx} "
f"| {len(response)} chars | {elapsed:.1f}s "
f"| {rate*3600:.0f}/hr | ETA: {eta/3600:.1f}h"
)
if generated % REFRESH_EVERY == 0:
new_completed = get_completed_indices(token)
new_from_others = new_completed - completed
if new_from_others:
print(f" >> {len(new_from_others)} new completions from other workers")
completed = new_completed
report_stats(token, worker, len(completed), target)
except KeyboardInterrupt:
print("\nInterrupted by user")
break
except Exception as e:
errors += 1
print(f"[ERROR] idx={idx}: {e}")
if errors > 50:
print("Too many errors, stopping.")
break
# ── Final report ──────────────────────────────────────────────
elapsed_total = time.time() - batch_start
report_stats(token, worker, len(completed), target)
print(f"\n{'='*60}")
print(f"Worker: {worker}")
print(f"Generated: {generated}")
print(f"Errors: {errors}")
print(f"Total: {len(completed)}/{target} ({len(completed)/target*100:.1f}%)")
if elapsed_total > 0:
print(f"Rate: {generated/elapsed_total*3600:.0f}/hr")
print(f"Time: {elapsed_total/3600:.1f}h")
print(f"Output: {output_path}")
if __name__ == "__main__":
main()

2
worker/requirements.txt Normal file
View file

@ -0,0 +1,2 @@
mlx>=0.22.0
mlx-lm>=0.22.1

103
worker/setup.sh Executable file
View file

@ -0,0 +1,103 @@
#!/bin/bash
set -e
echo "=== LEM Worker Setup ==="
echo ""
# Check platform
if [[ "$(uname -s)" != "Darwin" ]] || [[ "$(uname -m)" != "arm64" ]]; then
echo "Warning: MLX requires Apple Silicon (M1/M2/M3/M4)."
echo "For non-Apple hardware, use the --backend api option with llama.cpp or Ollama."
echo ""
fi
# Check Python
if ! command -v python3 &>/dev/null; then
echo "Error: python3 not found. Install Python 3.9+."
exit 1
fi
PYVER=$(python3 -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')")
echo "Python: $PYVER"
# Install dependencies
echo ""
echo "Installing Python dependencies..."
pip3 install -r requirements.txt
# Check InfluxDB token
echo ""
if [ -f "$HOME/.influx_token" ]; then
echo "InfluxDB token: found at ~/.influx_token"
elif [ -n "$INFLUX_TOKEN" ]; then
echo "InfluxDB token: found in INFLUX_TOKEN env"
else
echo "InfluxDB token: NOT FOUND"
echo ""
echo " You need an InfluxDB token to coordinate with other workers."
echo " Get it from the team and save it:"
echo ""
echo " echo 'YOUR_TOKEN_HERE' > ~/.influx_token"
echo ""
fi
# Check InfluxDB connectivity
echo ""
INFLUX_URL="${INFLUX_URL:-http://10.69.69.165:8181}"
echo -n "InfluxDB ($INFLUX_URL): "
if python3 -c "
import urllib.request, json, os
from pathlib import Path
token = os.environ.get('INFLUX_TOKEN', '')
if not token:
tp = Path.home() / '.influx_token'
if tp.exists(): token = tp.read_text().strip()
if not token:
print('SKIP (no token)')
exit(0)
body = json.dumps({'db': 'training', 'q': 'SELECT 1 AS ok'}).encode()
req = urllib.request.Request(
f'{os.environ.get(\"INFLUX_URL\", \"http://10.69.69.165:8181\")}/api/v3/query_sql',
data=body, headers={'Authorization': f'Bearer {token}', 'Content-Type': 'application/json'})
urllib.request.urlopen(req, timeout=5)
print('OK')
" 2>/dev/null; then
:
else
echo "UNREACHABLE"
echo " Make sure you're on the lab network (VLAN 69) or have VPN access."
fi
# Check data files
echo ""
echo "Data files:"
for f in data/gold-prompts.jsonl data/expansion-prompts.jsonl; do
if [ -f "$f" ]; then
lines=$(wc -l < "$f")
size=$(du -h "$f" | cut -f1)
echo " $f: $lines prompts ($size)"
else
echo " $f: NOT FOUND"
fi
done
# Summary
echo ""
echo "=== Setup Complete ==="
echo ""
echo "Quick start:"
echo ""
echo " # Gold generation (finish the 15K golden set):"
echo " python3 lem_generate.py --worker $(hostname)-gold --dry-run"
echo " python3 lem_generate.py --worker $(hostname)-gold"
echo ""
echo " # Expansion generation (46K+ prompts, needs trained LEM model):"
echo " python3 lem_expand.py --worker $(hostname)-expand --dry-run"
echo " python3 lem_expand.py --worker $(hostname)-expand"
echo ""
echo " # Use a smaller model for limited RAM:"
echo " python3 lem_generate.py --model mlx-community/gemma-3-4b-it-qat-4bit"
echo ""
echo " # Use API backend (llama.cpp, Ollama, etc.):"
echo " python3 lem_expand.py --backend api --api-url http://localhost:8080/v1"
echo ""