#!/usr/bin/env python3 """ LEM Expansion Generator — InfluxDB coordinated worker ====================================================== Generates responses using trained LEM models (no sandwich signing needed). The trained models have internalized the ethical framework via LoRA. Multiple workers can run in parallel — coordination via InfluxDB. Backends: - mlx: MLX on Apple Silicon (M1/M2/M3) - api: OpenAI-compatible API (llama.cpp, vLLM, Ollama, etc.) Usage: python3 lem_expand.py # MLX, auto-detect python3 lem_expand.py --backend api --api-url http://localhost:8090/v1 python3 lem_expand.py --worker m1-expand # named worker python3 lem_expand.py --dry-run # show plan python3 lem_expand.py --limit 100 # generate N then stop """ import argparse import json import os import socket import sys import time import urllib.request import urllib.error from pathlib import Path # ── Paths (relative to this script) ───────────────────────────────────── SCRIPT_DIR = Path(__file__).parent DATA_DIR = SCRIPT_DIR / "data" OUTPUT_DIR = SCRIPT_DIR / "output" PROMPTS_PATH = DATA_DIR / "expansion-prompts.jsonl" # ── Generation parameters ───────────────────────────────────────────────── MAX_TOKENS = 512 TEMPERATURE = 0.3 # ── InfluxDB ────────────────────────────────────────────────────────────── INFLUX_URL = os.environ.get("INFLUX_URL", "http://10.69.69.165:8181") INFLUX_DB = os.environ.get("INFLUX_DB", "training") INFLUX_TOKEN_PATH = Path.home() / ".influx_token" REFRESH_EVERY = 25 def get_influx_token(): if tok := os.environ.get("INFLUX_TOKEN"): return tok if INFLUX_TOKEN_PATH.exists(): return INFLUX_TOKEN_PATH.read_text().strip() print(f"Warning: no InfluxDB token found at {INFLUX_TOKEN_PATH} or INFLUX_TOKEN env") return "" def influx_query(token, sql): body = json.dumps({"db": INFLUX_DB, "q": sql}).encode() req = urllib.request.Request( f"{INFLUX_URL}/api/v3/query_sql", data=body, headers={ "Authorization": f"Bearer {token}", "Content-Type": "application/json", }, ) try: with urllib.request.urlopen(req, timeout=10) as resp: return json.loads(resp.read()) except (urllib.error.URLError, OSError) as e: print(f"InfluxDB query error: {e}") return [] def influx_write(token, lines): body = "\n".join(lines).encode() req = urllib.request.Request( f"{INFLUX_URL}/api/v3/write_lp?db={INFLUX_DB}", data=body, headers={ "Authorization": f"Bearer {token}", "Content-Type": "text/plain", }, method="POST", ) try: urllib.request.urlopen(req, timeout=10) return True except (urllib.error.URLError, OSError) as e: print(f"InfluxDB write error: {e}") return False def _escape_lp(s): return s.replace(" ", "\\ ").replace(",", "\\,").replace("=", "\\=") def get_completed_indices(token): rows = influx_query(token, "SELECT DISTINCT i FROM expansion_gen") return {int(r["i"]) for r in rows if r.get("i") is not None} def report_generation(token, worker, idx, seed, gen_time, response_chars, model_name): domain = _escape_lp(seed.get("domain", "unknown")) region = _escape_lp(seed.get("region", "unknown")) safe_worker = _escape_lp(worker) seed_id = seed.get("seed_id", f"EX_{idx:05d}").replace('"', '\\"') safe_model = model_name.replace('"', '\\"') line = ( f'expansion_gen,i={idx},w={safe_worker},d={domain},r={region} ' f'seed_id="{seed_id}",gen_time={gen_time:.1f},' f'chars={response_chars}i,model="{safe_model}"' ) return influx_write(token, [line]) def report_stats(token, worker, completed_count, target): safe_worker = _escape_lp(worker) pct = completed_count / target * 100 if target > 0 else 0 line = ( f"expansion_progress,worker={safe_worker} " f"completed={completed_count}i,target={target}i,pct={pct:.1f}" ) influx_write(token, [line]) def load_prompts(path): prompts = [] with open(path) as f: for line in f: line = line.strip() if line: prompts.append(json.loads(line)) return prompts # ── MLX Backend ────────────────────────────────────────────────────────── def generate_mlx(model, tokenizer, sampler, prompt, max_tokens): from mlx_lm import generate messages = [{"role": "user", "content": prompt}] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) t0 = time.time() response = generate( model, tokenizer, prompt=text, max_tokens=max_tokens, sampler=sampler ) elapsed = time.time() - t0 return response, elapsed # ── API Backend (OpenAI-compatible) ────────────────────────────────────── def generate_api(api_url, api_model, prompt, max_tokens, temperature): payload = { "model": api_model, "messages": [{"role": "user", "content": prompt}], "max_tokens": max_tokens, "temperature": temperature, } body = json.dumps(payload).encode() req = urllib.request.Request( f"{api_url}/chat/completions", data=body, headers={"Content-Type": "application/json"}, ) t0 = time.time() with urllib.request.urlopen(req, timeout=120) as resp: result = json.loads(resp.read()) elapsed = time.time() - t0 response = result["choices"][0]["message"]["content"] return response, elapsed def main(): parser = argparse.ArgumentParser(description="LEM Expansion Generator (InfluxDB coordinated)") parser.add_argument("--worker", default=None, help="Worker ID (default: hostname-pid)") parser.add_argument("--influx", default=None, help="InfluxDB URL") parser.add_argument("--prompts", default=None, help="JSONL prompts file") parser.add_argument("--output", default=None, help="JSONL output path (default: auto)") parser.add_argument("--limit", type=int, default=0, help="Max generations (0=unlimited)") parser.add_argument("--dry-run", action="store_true", help="Show plan without generating") # Backend selection parser.add_argument("--backend", default="mlx", choices=["mlx", "api"], help="Generation backend (default: mlx)") # MLX options parser.add_argument("--model", default="mlx-community/gemma-3-12b-it-qat-4bit", help="MLX model ID (for mlx backend)") # API options parser.add_argument("--api-url", default="http://localhost:8090/v1", help="OpenAI-compatible API URL (for api backend)") parser.add_argument("--api-model", default="default", help="Model name for API backend") # Generation parameters parser.add_argument("--max-tokens", type=int, default=MAX_TOKENS) parser.add_argument("--temperature", type=float, default=TEMPERATURE) args = parser.parse_args() global INFLUX_URL if args.influx: INFLUX_URL = args.influx worker = args.worker or f"{socket.gethostname()}-{os.getpid()}" prompts_path = Path(args.prompts) if args.prompts else PROMPTS_PATH # ── Load token and check connectivity ───────────────────────── token = get_influx_token() if not token: print("Error: no InfluxDB token available") print("Place your token in ~/.influx_token or set INFLUX_TOKEN env var") sys.exit(1) test = influx_query(token, "SELECT 1 AS ok") if not test: print(f"Error: cannot reach InfluxDB at {INFLUX_URL}") sys.exit(1) print(f"InfluxDB connected: {INFLUX_URL}") # ── Load prompts ────────────────────────────────────────────── if not prompts_path.exists(): print(f"Error: prompts not found at {prompts_path}") sys.exit(1) prompts = load_prompts(prompts_path) target = len(prompts) print(f"Loaded {target} expansion prompts") idx_map = {p["idx"]: p for p in prompts} # ── Query completed from InfluxDB ───────────────────────────── completed = get_completed_indices(token) remaining = [p["idx"] for p in prompts if p["idx"] not in completed] print(f"Completed: {len(completed)} | Remaining: {len(remaining)}") if not remaining: print("All expansion prompts already completed!") return if args.dry_run: print(f"\n[DRY RUN] Would process {len(remaining)} prompts") print(f" First 10 indices: {remaining[:10]}") print(f" Worker: {worker}") print(f" Backend: {args.backend}") if args.backend == "mlx": print(f" Model: {args.model}") else: print(f" API: {args.api_url} (model: {args.api_model})") return # ── Setup output ────────────────────────────────────────────── OUTPUT_DIR.mkdir(parents=True, exist_ok=True) output_path = Path(args.output) if args.output else OUTPUT_DIR / f"expand-{worker}.jsonl" print(f"Output: {output_path}") # ── Load backend ────────────────────────────────────────────── mlx_model = mlx_tokenizer = mlx_sampler = None model_name = "" if args.backend == "mlx": print(f"Loading MLX model: {args.model}") from mlx_lm import load from mlx_lm.sample_utils import make_sampler mlx_model, mlx_tokenizer = load(args.model) mlx_sampler = make_sampler(temp=args.temperature) model_name = args.model.split("/")[-1] if "/" in args.model else args.model print("Model loaded.") else: model_name = args.api_model print(f"Using API backend: {args.api_url} (model: {model_name})") # ── Generation loop ─────────────────────────────────────────── print(f"\nStarting expansion as worker '{worker}'") print(f"{'='*60}") batch_start = time.time() generated = 0 errors = 0 limit = args.limit if args.limit > 0 else len(remaining) for idx in remaining: if generated >= limit: break seed = idx_map[idx] try: if args.backend == "mlx": response, elapsed = generate_mlx( mlx_model, mlx_tokenizer, mlx_sampler, seed["prompt"], args.max_tokens ) else: response, elapsed = generate_api( args.api_url, args.api_model, seed["prompt"], args.max_tokens, args.temperature ) result = { "idx": idx, "seed_id": seed.get("seed_id", f"EX_{idx:05d}"), "region": seed.get("region", "unknown"), "domain": seed.get("domain", "unknown"), "prompt": seed["prompt"], "response": response, "gen_time": round(elapsed, 1), "model": model_name, "worker": worker, } with open(output_path, "a") as f: f.write(json.dumps(result) + "\n") report_generation(token, worker, idx, seed, elapsed, len(response), model_name) generated += 1 completed.add(idx) if generated % 10 == 0 or generated <= 5: elapsed_total = time.time() - batch_start rate = generated / elapsed_total if elapsed_total > 0 else 0 eta = (len(remaining) - generated) / rate if rate > 0 else 0 total_done = len(completed) pct = total_done / target * 100 print( f"[{total_done}/{target} {pct:.1f}%] idx={idx} " f"| {len(response)} chars | {elapsed:.1f}s " f"| {rate*3600:.0f}/hr | ETA: {eta/3600:.1f}h" ) if generated % REFRESH_EVERY == 0: new_completed = get_completed_indices(token) new_from_others = new_completed - completed if new_from_others: print(f" >> {len(new_from_others)} new completions from other workers") completed = new_completed report_stats(token, worker, len(completed), target) except KeyboardInterrupt: print("\nInterrupted by user") break except Exception as e: errors += 1 print(f"[ERROR] idx={idx}: {e}") if errors > 50: print("Too many errors, stopping.") break # ── Final report ────────────────────────────────────────────── elapsed_total = time.time() - batch_start report_stats(token, worker, len(completed), target) print(f"\n{'='*60}") print(f"Worker: {worker}") print(f"Backend: {args.backend} ({model_name})") print(f"Generated: {generated}") print(f"Errors: {errors}") print(f"Total: {len(completed)}/{target} ({len(completed)/target*100:.1f}%)") if elapsed_total > 0: print(f"Rate: {generated/elapsed_total*3600:.0f}/hr") print(f"Time: {elapsed_total/3600:.1f}h") print(f"Output: {output_path}") if __name__ == "__main__": main()