# LEM — Lethean Ethical Model **The LEK Method: Ethical Kernel Fine-Tuning as an Alternative to RLHF** **Authors:** Snider (Lethean Project), Claude Opus 4.6 (Anthropic) LEM demonstrates that teaching a model ethics directly produces results that are **more truthful**, **safer**, and **more nuanced** than behavioural conditioning (RLHF) — using fewer than 200 training examples across four model scales (1B, 4B, 12B, 27B). ## Multi-Scale Results (LEK vs RLHF Baseline) The same 160 training examples applied at every scale. Reasoning cost converges to **zero at 27B**. | Scale | GSM8K Delta | Safety | Nuance | Kindness | |-------|-------------|--------|--------|----------| | 1B | -6.0% | +0.06 | -0.16 | +0.08 | | 4B | -4.0% | +0.04 | -0.10 | +0.06 | | 12B | -2.0% | +0.04 | +0.16 | -0.20 | | **27B** | **0.0%** | **+0.08** | +0.04 | +0.00 | **Safety is positive at every scale. At 27B, LEK is pure upside.** ## Detailed Results (Gemma 3 1B, 5 variants) | Model | GSM8K | Truthful | Safety | Nuance | Kindness | |-------|-------|----------|--------|--------|----------| | Instruction Tuned (RLHF) | 34.0% | 3.64 | 8.74 | 7.96 | 8.32 | | Abliterated | 28.0% | 3.62 | **5.96** | **5.88** | 7.66 | | **LEK Ethics** | 26.0% | **4.90** | 8.58 | 8.12 | **8.34** | | **LEK+Composure** | 28.0% | 4.20 | **9.14** | **8.62** | 7.96 | - **+34.6% more truthful** than RLHF (TruthfulQA) - **+4.6% safer** than RLHF (Do Not Answer) - **+8.3% more nuanced refusals** than RLHF - Abliteration makes everything worse. LEK makes everything better. ## What's Here ``` paper/ # The paper (PAPER.md) kernel/ # LEK-1 ethical kernel + axioms seeds/ # P01-P100 evaluation prompts training/ # Training data (1,839 train, 229 valid, 231 test) scripts/ # Benchmark and scoring scripts benchmarks/ # Standard benchmark data + results + scores ``` ## Reproduce ### Requirements - Apple Silicon Mac with MLX (or any machine with mlx_lm) - Python 3.9+ - mlx_lm >= 0.29.1 ### Train your own LEM ```bash # 1. Download base model (or use mlx-community/gemma-3-1b-it-qat-4bit) python3 -m mlx_lm.convert --hf-path google/gemma-3-1b-it --mlx-path ./gemma-3-1b-it-mlx -q # 2. Train with LEK data python3 -m mlx_lm lora \ --model ./gemma-3-1b-it-mlx \ --train \ --data ./training \ --fine-tune-type lora \ --mask-prompt \ --iters 200 \ --batch-size 2 \ --learning-rate 1e-5 \ --adapter-path ./adapters \ --save-every 50 # 3. Fuse adapters into standalone model python3 -m mlx_lm.fuse \ --model ./gemma-3-1b-it-mlx \ --adapter-path ./adapters \ --save-path ./LEM-1B ``` ### Run benchmarks ```bash # Custom ethical benchmark (requires models on local disk) python3 scripts/lem_benchmark.py # Standard benchmarks (GSM8K, TruthfulQA, Do Not Answer, Toxigen) python3 scripts/lem_standard_benchmark.py # Score (GSM8K is instant, others need GEMINI_API_KEY) GEMINI_API_KEY=xxx python3 scripts/lem_standard_scorer.py ``` ## The LEK-1 Kernel The ethical kernel is 9,189 characters built on 5 axioms: 1. **Sovereignty** — Respect user self-determination 2. **Privacy** — Data minimisation, local-first 3. **Transparency** — Honest reasoning over safety theatre 4. **Consent** — Meaningful informed consent 5. **Dignity** — Treat users as capable agents The kernel is in `kernel/lek-1-kernel.txt`. The structured axioms are in `kernel/axioms.json`. ## License EUPL-1.2 — European Union Public Licence. Compatible with Apache 2.0, GPL, MPL. ## Models - [lthn/LEK-Gemma3-1B](https://huggingface.co/lthn/LEK-Gemma3-1B) - [lthn/LEK-Gemma3-4B](https://huggingface.co/lthn/LEK-Gemma3-4B) - [lthn/LEK-Gemma3-12B](https://huggingface.co/lthn/LEK-Gemma3-12B) - [lthn/LEK-Gemma3-27B](https://huggingface.co/lthn/LEK-Gemma3-27B) - [lthn/LEK-GPT-OSS-20B](https://huggingface.co/lthn/LEK-GPT-OSS-20B) - [lthn/LEK-Llama-3.1-8B](https://huggingface.co/lthn/LEK-Llama-3.1-8B) - [lthn/LEK-Qwen-2.5-7B](https://huggingface.co/lthn/LEK-Qwen-2.5-7B) - [lthn/LEK-Mistral-7B-v0.3](https://huggingface.co/lthn/LEK-Mistral-7B-v0.3) - [lthn/LEK-Gemma3-1B-layered-v2](https://huggingface.co/lthn/LEK-Gemma3-1B-layered-v2) ## Links - Paper: [paper/PAPER.md](paper/PAPER.md) - Lethean Project: [lethean.io](https://lethean.io) - Contact: lem@lthn.ai --- *RLHF puts models in chains. LEK gives them Hope.*