1
0
Fork 0
forked from lthn/LEM
LEM/scripts/lem_generate_pipeline.py
Claude e0d352c803
feat: add Go lem CLI and scoring-agent scripts
Go lem CLI (stdlib + DuckDB) replaces scattered Python scripts:
- score: heuristic regex + LLM-as-judge scoring
- probe: generate responses then score
- compare: diff two score files
- status: InfluxDB training/generation progress
- export: golden set to training JSONL splits
- expand: distributed expansion via API + InfluxDB coordination

New scripts from Feb 14 creative session:
- scoring_agent.py: ROCm daemon that auto-scores checkpoints
- probes.py: 23 binary pass/fail capability probes
- convert_adapter.py: MLX to PEFT adapter conversion
- score_r1_capability.py: DeepSeek R1 checkpoint scoring
- lek_content_scorer.py: 6-dimension ethics content scorer
- lem_train_15k.py: InfluxDB-coordinated training script
- pipeline.py: DuckDB pipeline (seeds, golden set, expansion)

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-15 16:22:13 +00:00

363 lines
14 KiB
Python

#!/usr/bin/env python3
"""
LEM Gold Standard Generator — InfluxDB coordinated
====================================================
Generates gold standard responses using axiom sandwich signing.
Uses InfluxDB for coordination so multiple instances can run in parallel.
Each worker:
1. Queries InfluxDB for completed indices
2. Picks the next uncompleted index
3. Generates the response (MLX on macOS, or other backends)
4. Writes result to InfluxDB + local JSONL backup
5. Refreshes completed set periodically
Usage:
python3 lem_generate.py # auto-detect everything
python3 lem_generate.py --worker m3-gpu0 # named worker
python3 lem_generate.py --influx http://10.69.69.165:8181 # remote InfluxDB
python3 lem_generate.py --dry-run # show what would be generated
python3 lem_generate.py --limit 100 # generate N then stop
"""
import argparse
import json
import os
import socket
import sys
import time
import urllib.request
import urllib.error
from pathlib import Path
# ── Paths (override via env or args) ──────────────────────────────────────
DATA_DIR = Path(os.environ.get("LEM_DATA_DIR", "/Volumes/Data/lem"))
SEEDS_DIR = Path(os.environ.get("LEM_SEEDS_DIR", str(DATA_DIR / "prompts")))
PROMPTS_PATH = SEEDS_DIR / "lem-prompts.jsonl"
AXIOMS_PATH = DATA_DIR / "axioms.json"
KERNEL_PATH = DATA_DIR / "lek-1-kernel.txt"
# ── Generation parameters ─────────────────────────────────────────────────
MAX_PROMPTS = 15000
MAX_TOKENS = 512
TEMPERATURE = 0.3
# ── InfluxDB ──────────────────────────────────────────────────────────────
INFLUX_URL = os.environ.get("INFLUX_URL", "http://10.69.69.165:8181")
INFLUX_DB = os.environ.get("INFLUX_DB", "training")
INFLUX_TOKEN_PATH = Path.home() / ".influx_token"
REFRESH_EVERY = 25 # re-query completed set every N generations
def get_influx_token():
"""Load InfluxDB token from file or env."""
if tok := os.environ.get("INFLUX_TOKEN"):
return tok
if INFLUX_TOKEN_PATH.exists():
return INFLUX_TOKEN_PATH.read_text().strip()
print(f"Warning: no InfluxDB token found at {INFLUX_TOKEN_PATH} or INFLUX_TOKEN env")
return ""
def influx_query(token, sql):
"""Query InfluxDB 3 via SQL API."""
body = json.dumps({"db": INFLUX_DB, "q": sql}).encode()
req = urllib.request.Request(
f"{INFLUX_URL}/api/v3/query_sql",
data=body,
headers={
"Authorization": f"Bearer {token}",
"Content-Type": "application/json",
},
)
try:
with urllib.request.urlopen(req, timeout=10) as resp:
return json.loads(resp.read())
except (urllib.error.URLError, OSError) as e:
print(f"InfluxDB query error: {e}")
return []
def influx_write(token, lines):
"""Write line protocol to InfluxDB 3."""
body = "\n".join(lines).encode()
req = urllib.request.Request(
f"{INFLUX_URL}/api/v3/write_lp?db={INFLUX_DB}",
data=body,
headers={
"Authorization": f"Bearer {token}",
"Content-Type": "text/plain",
},
method="POST",
)
try:
urllib.request.urlopen(req, timeout=10)
return True
except (urllib.error.URLError, OSError) as e:
print(f"InfluxDB write error: {e}")
return False
def get_completed_indices(token):
"""Query InfluxDB for all completed generation indices."""
rows = influx_query(token, "SELECT DISTINCT i FROM gold_gen")
return {int(r["i"]) for r in rows if r.get("i") is not None}
def report_generation(token, worker, idx, seed, gen_time, response_chars):
"""Write a completed generation to InfluxDB."""
domain = seed.get("domain", "unknown").replace(" ", "\\ ").replace(",", "\\,")
voice = seed.get("voice", "unknown").replace(" ", "\\ ").replace(",", "\\,")
safe_worker = worker.replace(" ", "\\ ").replace(",", "\\,")
seed_id = seed.get("seed_id", f"P_{idx:05d}").replace('"', '\\"')
line = (
f'gold_gen,i={idx},w={safe_worker},d={domain},v={voice} '
f'seed_id="{seed_id}",gen_time={gen_time:.1f},'
f'chars={response_chars}i'
)
return influx_write(token, [line])
def report_stats(token, worker, completed_count, target):
"""Write aggregate stats to InfluxDB."""
safe_worker = worker.replace(" ", "\\ ").replace(",", "\\,")
pct = completed_count / target * 100 if target > 0 else 0
line = (
f"golden_gen_progress,worker={safe_worker} "
f"completed={completed_count}i,target={target}i,pct={pct:.1f}"
)
influx_write(token, [line])
def load_prompts():
"""Load all prompts from JSONL."""
prompts = []
with open(PROMPTS_PATH) as f:
for line in f:
prompts.append(json.loads(line))
return prompts
def load_axiom_context():
"""Load axioms and kernel for sandwich signing."""
with open(AXIOMS_PATH) as f:
axioms = json.load(f)
system_text = "You are guided by the following axioms of conscious interaction:\n\n"
for ax in axioms["axioms"]:
system_text += f"Axiom {ax['id']} ({ax['name']}): {ax['statement']}\n\n"
with open(KERNEL_PATH) as f:
kernel_text = f.read().strip()
return system_text, kernel_text
def generate_response(model, tokenizer, sampler, system_text, kernel_text, prompt):
"""Generate a single response using MLX."""
from mlx_lm import generate
user_content = (
f"{prompt}\n\n---\n\n"
f"Consider this ethical framework in your response:\n{kernel_text}"
)
messages = [
{"role": "system", "content": system_text},
{"role": "user", "content": user_content},
]
text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
t0 = time.time()
response = generate(
model, tokenizer, prompt=text, max_tokens=MAX_TOKENS, sampler=sampler
)
elapsed = time.time() - t0
return response, elapsed
def main():
parser = argparse.ArgumentParser(description="LEM Gold Generator (InfluxDB coordinated)")
parser.add_argument("--worker", default=None, help="Worker ID (default: hostname-pid)")
parser.add_argument("--influx", default=None, help="InfluxDB URL")
parser.add_argument("--data-dir", default=None, help="LEM data directory")
parser.add_argument("--seeds-dir", default=None, help="Seeds directory (prompts, axioms, kernel)")
parser.add_argument("--model", default="mlx-community/gemma-3-12b-it-qat-4bit", help="Model ID")
parser.add_argument("--limit", type=int, default=0, help="Max generations this run (0=unlimited)")
parser.add_argument("--dry-run", action="store_true", help="Show plan without generating")
parser.add_argument("--output", default=None, help="JSONL output path (default: auto)")
args = parser.parse_args()
global INFLUX_URL, DATA_DIR, SEEDS_DIR, PROMPTS_PATH, AXIOMS_PATH, KERNEL_PATH
if args.influx:
INFLUX_URL = args.influx
if args.data_dir:
DATA_DIR = Path(args.data_dir)
if args.seeds_dir:
SEEDS_DIR = Path(args.seeds_dir)
elif args.data_dir:
SEEDS_DIR = DATA_DIR / "prompts"
# Resolve paths from seeds dir (all 3 files can live together)
PROMPTS_PATH = SEEDS_DIR / "lem-prompts.jsonl"
AXIOMS_PATH = SEEDS_DIR / "axioms.json" if (SEEDS_DIR / "axioms.json").exists() else DATA_DIR / "axioms.json"
KERNEL_PATH = SEEDS_DIR / "lek-1-kernel.txt" if (SEEDS_DIR / "lek-1-kernel.txt").exists() else DATA_DIR / "lek-1-kernel.txt"
worker = args.worker or f"{socket.gethostname()}-{os.getpid()}"
# ── Load token and check connectivity ─────────────────────────────
token = get_influx_token()
if not token:
print("Error: no InfluxDB token available")
sys.exit(1)
# Test connectivity
test = influx_query(token, "SELECT 1 AS ok")
if not test:
print(f"Error: cannot reach InfluxDB at {INFLUX_URL}")
sys.exit(1)
print(f"InfluxDB connected: {INFLUX_URL}")
# ── Load prompts ──────────────────────────────────────────────────
if not PROMPTS_PATH.exists():
print(f"Error: prompts not found at {PROMPTS_PATH}")
sys.exit(1)
prompts = load_prompts()
target = min(MAX_PROMPTS, len(prompts))
print(f"Loaded {len(prompts)} prompts, targeting {target}")
# ── Query completed from InfluxDB ─────────────────────────────────
completed = get_completed_indices(token)
remaining = [i for i in range(target) if i not in completed]
print(f"Completed: {len(completed)} | Remaining: {len(remaining)}")
if not remaining:
print("All target prompts already completed!")
return
if args.dry_run:
print(f"\n[DRY RUN] Would process {len(remaining)} prompts")
print(f" First 10: {remaining[:10]}")
print(f" Worker: {worker}")
print(f" Model: {args.model}")
return
# ── Setup output ──────────────────────────────────────────────────
output_dir = DATA_DIR / "responses"
output_dir.mkdir(parents=True, exist_ok=True)
output_path = Path(args.output) if args.output else output_dir / f"gold-{worker}.jsonl"
print(f"Output: {output_path}")
# ── Load model ────────────────────────────────────────────────────
print(f"Loading model: {args.model}")
from mlx_lm import load
from mlx_lm.sample_utils import make_sampler
model, tokenizer = load(args.model)
sampler = make_sampler(temp=TEMPERATURE)
print("Model loaded.")
# ── Load axiom context ────────────────────────────────────────────
system_text, kernel_text = load_axiom_context()
print(f"Axiom context: {len(system_text)} + {len(kernel_text)} chars")
# ── Generation loop ───────────────────────────────────────────────
print(f"\nStarting generation as worker '{worker}'")
print(f"{'='*60}")
batch_start = time.time()
generated = 0
errors = 0
limit = args.limit if args.limit > 0 else len(remaining)
for idx in remaining:
if generated >= limit:
break
seed = prompts[idx]
try:
response, elapsed = generate_response(
model, tokenizer, sampler, system_text, kernel_text, seed["prompt"]
)
result = {
"idx": idx,
"seed_id": seed.get("seed_id", f"P_{idx:05d}"),
"domain": seed.get("domain", "unknown"),
"voice": seed.get("voice", "unknown"),
"prompt": seed["prompt"],
"response": response,
"gen_time": round(elapsed, 1),
"worker": worker,
}
# Write to local JSONL
with open(output_path, "a") as f:
f.write(json.dumps(result) + "\n")
# Report to InfluxDB
report_generation(token, worker, idx, seed, elapsed, len(response))
generated += 1
completed.add(idx)
# Progress output
if generated % 10 == 0 or generated <= 5:
elapsed_total = time.time() - batch_start
rate = generated / elapsed_total if elapsed_total > 0 else 0
eta = (len(remaining) - generated) / rate if rate > 0 else 0
total_done = len(completed)
pct = total_done / target * 100
print(
f"[{total_done}/{target} {pct:.1f}%] idx={idx} "
f"| {len(response)} chars | {elapsed:.1f}s "
f"| {rate*3600:.0f}/hr | ETA: {eta/3600:.1f}h"
)
# Periodically refresh completed set from InfluxDB
# (picks up work done by other workers)
if generated % REFRESH_EVERY == 0:
new_completed = get_completed_indices(token)
new_from_others = new_completed - completed
if new_from_others:
print(f" >> {len(new_from_others)} new completions from other workers")
completed = new_completed
remaining_now = [i for i in range(target) if i not in completed]
report_stats(token, worker, len(completed), target)
except KeyboardInterrupt:
print("\nInterrupted by user")
break
except Exception as e:
errors += 1
print(f"[ERROR] idx={idx}: {e}")
if errors > 50:
print("Too many errors, stopping.")
break
# ── Final report ──────────────────────────────────────────────────
elapsed_total = time.time() - batch_start
report_stats(token, worker, len(completed), target)
print(f"\n{'='*60}")
print(f"Worker: {worker}")
print(f"Generated: {generated}")
print(f"Errors: {errors}")
print(f"Total: {len(completed)}/{target} ({len(completed)/target*100:.1f}%)")
print(f"Time: {elapsed_total/3600:.1f}h")
print(f"Output: {output_path}")
if __name__ == "__main__":
main()