1
0
Fork 0
forked from lthn/blockchain
blockchain/src/crypto/zarcanum.cpp

164 lines
7.8 KiB
C++
Raw Normal View History

// Copyright (c) 2022 Zano Project
// Copyright (c) 2022 sowle (val@zano.org, crypto.sowle@gmail.com)
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
//
// Note: This file originates from tests/functional_tests/crypto_tests.cpp
#include "epee/include/misc_log_ex.h"
#include "zarcanum.h"
#include "crypto/range_proofs.h"
#include "../currency_core/crypto_config.h" // TODO: move it to the crypto
namespace crypto
{
const scalar_t c_zarcanum_z_coeff_s = { 0, 1, 0, 0 }; // c_scalar_2p64
const mp::uint256_t c_zarcanum_z_coeff_mp = c_zarcanum_z_coeff_s.as_boost_mp_type<mp::uint256_t>();
mp::uint256_t zarcanum_precalculate_l_div_z_D(const mp::uint128_t& pos_difficulty)
{
//LOG_PRINT_GREEN_L0(ENDL << "floor( l / (z * D) ) = " << c_scalar_L.as_boost_mp_type<mp::uint256_t>() / (c_zarcanum_z_coeff_mp * pos_difficulty));
return c_scalar_L.as_boost_mp_type<mp::uint256_t>() / (c_zarcanum_z_coeff_mp * pos_difficulty); // == floor( l / (z * D) )
}
mp::uint256_t zarcanum_precalculate_z_l_div_z_D(const mp::uint128_t& pos_difficulty)
{
//LOG_PRINT_GREEN_L0(ENDL << "z * floor( l / (z * D) ) = " << c_zarcanum_z_coeff_mp * (c_scalar_L.as_boost_mp_type<mp::uint256_t>() / (c_zarcanum_z_coeff_mp * pos_difficulty)));
return c_zarcanum_z_coeff_mp * (c_scalar_L.as_boost_mp_type<mp::uint256_t>() / (c_zarcanum_z_coeff_mp * pos_difficulty)); // == z * floor( l / (z * D) )
}
bool zarcanum_check_main_pos_inequality(const hash& kernel_hash, const scalar_t& blinding_mask, const scalar_t& secret_q,
2022-10-05 14:02:32 +02:00
const scalar_t& last_pow_block_id_hashed, const mp::uint256_t& z_l_div_z_D, uint64_t stake_amount, mp::uint256_t& lhs, mp::uint512_t& rhs)
{
scalar_t lhs_s = scalar_t(kernel_hash) * (blinding_mask + secret_q + last_pow_block_id_hashed); // == h * (f + q + f') mod l
lhs = lhs_s.as_boost_mp_type<mp::uint256_t>();
2022-10-05 14:02:32 +02:00
rhs = static_cast<mp::uint512_t>(z_l_div_z_D) * stake_amount; // == floor( l / (z * D) ) * z * a
//LOG_PRINT_GREEN_L0(ENDL <<
// "z_l_div_z_D = " << z_l_div_z_D << ENDL <<
// "stake_amount = " << stake_amount << ENDL <<
// "lhs = " << lhs << ENDL <<
// "rhs = " << rhs);
return lhs < rhs; // h * (f + q + f') mod l < floor( l / (z * D) ) * z * a
}
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
if (!(cond)) { LOG_PRINT_RED("zarcanum_generate_proof: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
if (p_err) { *p_err = err_code; } return false; }
bool zarcanum_generate_proof(const hash& m, const hash& kernel_hash, const std::vector<crypto::CLSAG_GGXG_input_ref_t>& ring, const point_t& pseudo_out_amount_commitment,
const scalar_t& last_pow_block_id_hashed,
const scalar_t& blinding_mask, const scalar_t& secret_q, uint64_t stake_amount,
uint64_t secret_index,
zarcanum_proof& result, uint8_t* p_err /* = nullptr */)
{
const scalar_t a = stake_amount;
const scalar_t h = scalar_t(kernel_hash);
const scalar_t f_plus_q = blinding_mask + secret_q;
const scalar_t f_plus_q_plus_fp = f_plus_q + last_pow_block_id_hashed;
const scalar_t lhs = h * f_plus_q_plus_fp; // == h * (f + q + f') mod l
const mp::uint256_t d_mp = lhs.as_boost_mp_type<mp::uint256_t>() / (c_zarcanum_z_coeff_mp * stake_amount) + 1;
result.d = scalar_t(d_mp);
const scalar_t dz = result.d * c_zarcanum_z_coeff_s;
const scalar_t ba = dz * a - lhs; // b_a = dza - h(f + q + f')
const scalar_t bf = dz * f_plus_q - h * a; // b_f = dz(f + q) - ha
const scalar_t x0 = scalar_t::random(), x1 = scalar_t::random(), x2 = scalar_t::random();
const scalar_t bx = x2 - h * x1 + dz * x0; // b_x = x'' - hx' + dzx
point_t C = x0 * c_point_X + a * c_point_H + f_plus_q * c_point_G;
point_t C_prime = x1 * c_point_X + f_plus_q * c_point_H + a * c_point_G;
point_t E = bx * c_point_X + ba * c_point_H + bf * c_point_G;
result.C = (c_scalar_1div8 * C).to_public_key();
result.C_prime = (c_scalar_1div8 * C_prime).to_public_key();
result.E = (c_scalar_1div8 * E).to_public_key();
// three proofs with a shared Fiat-Shamir challenge c
// 1) linear composition proof for the fact, that C + C' = lin(X, H + G) = (x + x') X + (a + f + q) (H + G)
// 2) linear composition proof for the fact, that C - C' = lin(X, H - G) = (x - x') X + (a - f - q) (H - G)
// 3) Schnorr proof for the fact, that hC' - dzC + E + f'hH = lin(X) = x'' X
point_t F = h * C_prime - dz * C + E + last_pow_block_id_hashed * h * c_point_H;
scalar_t r0 = scalar_t::random();
scalar_t r1 = scalar_t::random();
scalar_t r2 = scalar_t::random();
scalar_t r3 = scalar_t::random();
scalar_t r4 = scalar_t::random();
point_t R_01 = r0 * c_point_X + r1 * c_point_H_plus_G;
point_t R_23 = r2 * c_point_X + r3 * c_point_H_minus_G;
point_t R_4 = r4 * c_point_G;
hash_helper_t::hs_t hash_calc(3);
hash_calc.add_32_chars(CRYPTO_HDS_ZARCANUM_PROOF_HASH);
hash_calc.add_point(R_01);
hash_calc.add_point(R_23);
hash_calc.add_point(R_4);
hash_calc.add_point(C + C_prime);
hash_calc.add_point(C - C_prime);
hash_calc.add_point(F);
result.c = hash_calc.calc_hash();
result.y0 = r0 + result.c * (x0 + x1); // y_0 = r_0 + c (x + x')
result.y1 = r1 + result.c * (a + f_plus_q); // y_1 = r_1 + c (a + f + q)
result.y2 = r2 + result.c * (x0 - x1); // y_2 = r_2 + c (x - x')
result.y3 = r3 + result.c * (a - f_plus_q); // y_3 = r_3 + c (a - f - q)
result.y4 = r4 + result.c * x2; // y_4 = r_4 + c x''
// range proof for E
const scalar_vec_t values = { ba }; // H component
const scalar_vec_t masks = { bf }; // G component
const scalar_vec_t masks2 = { bx }; // X component
const std::vector<const public_key*> E_1div8_vec_ptr = { &result.E };
if (!bppe_gen<bpp_crypto_trait_zano<>>(values, masks, masks2, E_1div8_vec_ptr, result.E_range_proof, p_err))
{
return false;
}
// = four-layers ring signature data outline =
// (j in [0, ring_size-1])
// layer 0 ring
// se.outputs[j].stealth_address;
// layer 0 secret (with respect to G)
// in_contexts[i].in_ephemeral.sec;
// layer 0 linkability
// in.k_image;
//
// layer 1 ring
// crypto::point_t(se.outputs[j].amount_commitment) - pseudo_out_amount_commitment;
// layer 1 secret (with respect to G)
// se.real_out_amount_blinding_mask - blinding_mask;
//
// additional layers for Zarcanum:
//
// layer 2 ring
// C - A[j] - Q[j]
// layer 2 secret (with respect to X)
// x0
//
// layer 3 ring
// Q[j]
// layer 3 secret (with respect to G)
// secret_q
return true;
}
bool zarcanum_verify_proof(const hash& kernel_hash, const public_key& commitment_1div8, const scalar_t& last_pow_block_id_hashed, const zarcanum_proof& proof, uint8_t* p_err /* = nullptr */)
{
return false;
}
} // namespace crypto