1
0
Fork 0
forked from lthn/blockchain
blockchain/tests/functional_tests/difficulty_analysis.cpp

369 lines
15 KiB
C++
Raw Normal View History

2019-01-23 13:36:48 +03:00
// Copyright (c) 2014-2018 Zano Project
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <iostream>
#include <vector>
#include <algorithm>
#include <boost/algorithm/string.hpp>
#include <boost/tokenizer.hpp>
#include "include_base_utils.h"
using namespace epee;
#include "wallet/wallet2.h"
#include "currency_core/blockchain_storage.h"
2019-02-06 13:50:51 +03:00
using std::size_t;
using std::uint64_t;
using std::vector;
2019-01-23 13:36:48 +03:00
bool parse_file(const std::string& path, std::vector<std::vector<uint64_t>>& blocks, uint64_t reserve_size)
2019-01-23 13:36:48 +03:00
{
2019-01-23 18:35:59 +03:00
std::ifstream fstr(path);
2019-01-23 13:36:48 +03:00
if (!fstr.good())
{
LOG_ERROR("unable to open " << path);
return false;
2019-01-23 13:36:48 +03:00
}
LOG_PRINT_L0("Loading array...");
std::string line;
blocks.reserve(reserve_size);
2019-01-23 13:36:48 +03:00
while (std::getline(fstr, line))
{
std::vector<uint64_t> array_num;
boost::tokenizer<> tok(line);
std::transform(tok.begin(), tok.end(), std::back_inserter(array_num),
&boost::lexical_cast<uint64_t, std::string>);
array_num.push_back(0); //reserve space for hashrate value
2019-01-23 13:36:48 +03:00
blocks.push_back(array_num);
}
LOG_PRINT_L0("Loaded " << blocks.size() << " lines");
return true;
}
2019-02-06 13:50:51 +03:00
#define BBR_DIFFICULTY_TARGET 120 // seconds
#define BBR_DIFFICULTY_WINDOW 720 // blocks
#define BBR_DIFFICULTY_LAG 15 // !!!
#define BBR_DIFFICULTY_CUT 60 // timestamps to cut after sorting
#define BBR_DIFFICULTY_STARTER 1
#define NEW_DIFFICULTY_WINDOW 360
#define NEW_DIFFICULTY_CUT_OLD 60 // timestamps to cut after sorting on the oldest timestamps
#define NEW_DIFFICULTY_CUT_LAST 0 // timestamps to cut after sorting on the most recent timestamps
const boost::multiprecision::uint256_t max128bit(std::numeric_limits<boost::multiprecision::uint128_t>::max());
currency::wide_difficulty_type bbr_next_difficulty(std::vector<uint64_t>& timestamps, std::vector<currency::wide_difficulty_type>& cumulative_difficulties, size_t target_seconds)
{
2019-02-06 13:50:51 +03:00
// timestamps - first is latest, back - is oldest timestamps
//cutoff DIFFICULTY_LAG
if (timestamps.size() > BBR_DIFFICULTY_WINDOW)
{
timestamps.resize(BBR_DIFFICULTY_WINDOW);
cumulative_difficulties.resize(BBR_DIFFICULTY_WINDOW);
}
size_t length = timestamps.size();
CHECK_AND_ASSERT_MES(length == cumulative_difficulties.size(), 0, "Check \"length == cumulative_difficulties.size()\" failed");
if (length <= 1) {
return BBR_DIFFICULTY_STARTER;
}
static_assert(BBR_DIFFICULTY_WINDOW >= 2, "Window is too small");
CHECK_AND_ASSERT_MES(length <= BBR_DIFFICULTY_WINDOW, 0, "length <= BBR_DIFFICULTY_WINDOW check failed, length=" << length);
sort(timestamps.begin(), timestamps.end(), std::greater<uint64_t>());
size_t cut_begin, cut_end;
static_assert(2 * BBR_DIFFICULTY_CUT <= BBR_DIFFICULTY_WINDOW - 2, "Cut length is too large");
if (length <= BBR_DIFFICULTY_WINDOW - 2 * BBR_DIFFICULTY_CUT) {
cut_begin = 0;
cut_end = length;
}
else {
cut_begin = (length - (BBR_DIFFICULTY_WINDOW - 2 * BBR_DIFFICULTY_CUT) + 1) / 2;
cut_end = cut_begin + (BBR_DIFFICULTY_WINDOW - 2 * BBR_DIFFICULTY_CUT);
}
CHECK_AND_ASSERT_THROW_MES(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length, "validation in next_difficulty is failed");
uint64_t time_span = timestamps[cut_begin] - timestamps[cut_end - 1];
if (time_span == 0) {
time_span = 1;
}
currency::wide_difficulty_type total_work = cumulative_difficulties[cut_begin] - cumulative_difficulties[cut_end - 1];
boost::multiprecision::uint256_t res = (boost::multiprecision::uint256_t(total_work) * target_seconds + time_span - 1) / time_span;
if (res > max128bit)
return 0; // to behave like previous implementation, may be better return max128bit?
return res.convert_to<currency::wide_difficulty_type>();
}
void get_cut_location_from_len(size_t length, size_t& cut_begin, size_t& cut_end, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST)
{
if (length <= REDEF_DIFFICULTY_WINDOW - (REDEF_DIFFICULTY_CUT_OLD+ REDEF_DIFFICULTY_CUT_LAST))
2019-02-06 13:50:51 +03:00
{
cut_begin = 0;
cut_end = length;
}
else
{
cut_begin = REDEF_DIFFICULTY_CUT_LAST;
2019-02-06 13:50:51 +03:00
cut_end = cut_begin + (REDEF_DIFFICULTY_WINDOW - (REDEF_DIFFICULTY_CUT_OLD + REDEF_DIFFICULTY_CUT_LAST));
}
}
currency::wide_difficulty_type bbr_next_difficulty_configurable(std::vector<uint64_t>& timestamps, std::vector<currency::wide_difficulty_type>& cumulative_difficulties, size_t target_seconds, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST)
{
// timestamps - first is latest, back - is oldest timestamps
//cutoff DIFFICULTY_LAG
if (timestamps.size() > REDEF_DIFFICULTY_WINDOW)
{
timestamps.resize(REDEF_DIFFICULTY_WINDOW);
cumulative_difficulties.resize(REDEF_DIFFICULTY_WINDOW);
}
size_t length = timestamps.size();
CHECK_AND_ASSERT_MES(length == cumulative_difficulties.size(), 0, "Check \"length == cumulative_difficulties.size()\" failed");
if (length <= 1) {
return BBR_DIFFICULTY_STARTER;
}
CHECK_AND_ASSERT_THROW_MES(REDEF_DIFFICULTY_WINDOW >= 2, "Window is too small");
CHECK_AND_ASSERT_MES(length <= REDEF_DIFFICULTY_WINDOW, 0, "length <= REDEF_DIFFICULTY_WINDOW check failed, length=" << length);
sort(timestamps.begin(), timestamps.end(), std::greater<uint64_t>());
size_t cut_begin, cut_end;
CHECK_AND_ASSERT_THROW_MES( (REDEF_DIFFICULTY_CUT_OLD + REDEF_DIFFICULTY_CUT_LAST) <= REDEF_DIFFICULTY_WINDOW - 2, "Cut length is too large");
get_cut_location_from_len(length, cut_begin, cut_end, REDEF_DIFFICULTY_WINDOW, REDEF_DIFFICULTY_CUT_OLD, REDEF_DIFFICULTY_CUT_LAST);
2019-02-06 13:50:51 +03:00
CHECK_AND_ASSERT_THROW_MES(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length, "validation in next_difficulty is failed");
uint64_t time_span = timestamps[cut_begin] - timestamps[cut_end - 1];
if (time_span == 0) {
time_span = 1;
}
currency::wide_difficulty_type total_work = cumulative_difficulties[cut_begin] - cumulative_difficulties[cut_end - 1];
boost::multiprecision::uint256_t res = (boost::multiprecision::uint256_t(total_work) * target_seconds + time_span - 1) / time_span;
if (res > max128bit)
return 0; // to behave like previous implementation, may be better return max128bit?
return res.convert_to<currency::wide_difficulty_type>();
}
currency::wide_difficulty_type bbr_next_difficulty_composit(std::vector<uint64_t>& timestamps, std::vector<currency::wide_difficulty_type>& cumulative_difficulties, size_t target_seconds, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST)
{
sort(timestamps.begin(), timestamps.end(), std::greater<uint64_t>());
std::vector<uint64_t> timestamps_local = timestamps;
currency::wide_difficulty_type dif = bbr_next_difficulty_configurable(timestamps_local, cumulative_difficulties, target_seconds, REDEF_DIFFICULTY_WINDOW, REDEF_DIFFICULTY_CUT_OLD, REDEF_DIFFICULTY_CUT_LAST);
currency::wide_difficulty_type dif2 = bbr_next_difficulty_configurable(timestamps_local, cumulative_difficulties, target_seconds, 240, 5, 5);
currency::wide_difficulty_type dif3 = bbr_next_difficulty_configurable(timestamps_local, cumulative_difficulties, target_seconds, 40, 1, 1);
return (dif3 + dif2 + dif) / 3;
}
2019-02-06 13:50:51 +03:00
currency::wide_difficulty_type bbr_next_difficulty2(std::vector<uint64_t>& timestamps, std::vector<currency::wide_difficulty_type>& cumulative_difficulties, size_t target_seconds)
{
return bbr_next_difficulty_configurable(timestamps, cumulative_difficulties, target_seconds, NEW_DIFFICULTY_WINDOW, NEW_DIFFICULTY_CUT_OLD, NEW_DIFFICULTY_CUT_LAST);
}
uint64_t get_next_timestamp_by_difficulty_and_hashrate(uint64_t last_timestamp, currency::wide_difficulty_type difficulty, uint64_t hashrate)
{
uint64_t seconds = (difficulty / hashrate).convert_to<uint64_t>();
return last_timestamp + seconds;
}
void print_blocks(const std::vector<std::vector<uint64_t>>& blocks, const std::string& res_path)
{
std::stringstream ss;
for (size_t i = 0; i != blocks.size(); i++)
{
ss << std::left << std::setw(10) << i << std::left << std::setw(15) << blocks[i][0];
for (size_t j = 1; j != blocks[i].size()-1; j++)
{
ss << std::left << std::setw(15) << blocks[i][j];
2019-02-06 13:50:51 +03:00
}
ss << std::left << std::setw(20) << blocks[i][blocks[i].size() - 1] << ENDL;
}
file_io_utils::save_string_to_file(res_path, ss.str());
LOG_PRINT_L0("Done, saved to file " << res_path);
}
uint64_t get_hashrate_by_timestamp(const std::map<uint64_t, uint64_t> timestamp_to_hashrate, uint64_t timestamp)
{
auto it = timestamp_to_hashrate.lower_bound(timestamp);
if (it == timestamp_to_hashrate.end())
{
return 0;
}
if(it->first == timestamp)
return it->second;
if (it == timestamp_to_hashrate.begin())
{
LOG_ERROR("Internal error, lower_bound returned begin for timestamp " << timestamp);
return 0;
}
2019-02-07 20:10:39 +01:00
return (--it)->second;;
}
template<typename cb_t>
void perform_simulation_for_function(const std::map<uint64_t, uint64_t>& timestamp_to_hashrate, uint64_t index_in_result, const std::vector<std::vector<uint64_t>>& blocks, std::vector<std::vector<uint64_t>>& result_blocks, cb_t cb)
{
std::vector<uint64_t> timestamps;
std::vector<currency::wide_difficulty_type> cumul_difficulties;
timestamps.reserve(4010);
cumul_difficulties.reserve(4010);
timestamps.push_back(blocks[0][0]);
cumul_difficulties.push_back(blocks[0][1] * 120);
currency::wide_difficulty_type curren_difficulty = 0;
size_t index_in_result_blocks = 0;
while (true)
{
uint64_t hr = 0;
for (size_t i = 0; i != 10; i++)
{
if (timestamps.size() < BBR_DIFFICULTY_WINDOW)
{
curren_difficulty = blocks[index_in_result_blocks][1] * 120;
}
else
{
std::vector<uint64_t> backward_timestamps;
backward_timestamps.reserve(BBR_DIFFICULTY_WINDOW);
std::copy(timestamps.rbegin(), timestamps.rbegin() + BBR_DIFFICULTY_WINDOW - 1, std::back_inserter(backward_timestamps));
std::vector<currency::wide_difficulty_type> backward_cumul_difficulties;
backward_cumul_difficulties.reserve(BBR_DIFFICULTY_WINDOW);
std::copy(cumul_difficulties.rbegin(), cumul_difficulties.rbegin() + BBR_DIFFICULTY_WINDOW - 1, std::back_inserter(backward_cumul_difficulties));
uint64_t ts = timestamps.back();
curren_difficulty = cb(backward_timestamps, backward_cumul_difficulties, BBR_DIFFICULTY_TARGET);
}
cumul_difficulties.push_back(cumul_difficulties.back() + curren_difficulty);
hr = get_hashrate_by_timestamp(timestamp_to_hashrate, timestamps.back());
if (!hr)
break;
timestamps.push_back(get_next_timestamp_by_difficulty_and_hashrate(timestamps.back(), curren_difficulty, hr));
}
if (!hr)
break;
result_blocks[index_in_result_blocks][index_in_result] = timestamps.back();
result_blocks[index_in_result_blocks][index_in_result + 1] = curren_difficulty.convert_to<uint64_t>() / 120;
index_in_result_blocks++;
std::cout << index_in_result_blocks << "\r";
}
2019-02-07 20:10:39 +01:00
if (index_in_result_blocks < 410)
{
for (size_t k = index_in_result_blocks; k != 410; k++)
result_blocks[k][index_in_result] = result_blocks[k-1][index_in_result];
}
std::cout << "\n";
}
void run_emulation(const std::string& path)
{
//0 - timestamp, 1 - difficulty/120, 2 net hashrate (h/s)
std::vector<std::vector<uint64_t>> blocks;
2019-02-06 13:50:51 +03:00
std::vector<std::vector<uint64_t>> result_blocks;
blocks.reserve(401);
result_blocks.reserve(401);
// std::vector<uint64_t> timestamps, timestamps_new;
// std::vector<currency::wide_difficulty_type> cumul_difficulties, cumul_difficulties_new;
// timestamps.reserve(4010);
// cumul_difficulties.reserve(4010);
// timestamps_new.reserve(4010);
// cumul_difficulties_new.reserve(4010);
2019-02-06 13:50:51 +03:00
parse_file(path, blocks, 500);
result_blocks.resize(blocks.size() * 2);
for (auto& b : result_blocks) {b.resize(20);}
std::map<uint64_t, uint64_t> timestamp_to_hashrate;
2019-02-06 13:50:51 +03:00
for (uint64_t b_no = 0; b_no != blocks.size(); b_no++)
{
auto& b_line = blocks[b_no];
timestamp_to_hashrate[b_line[0]] = b_line[2];
result_blocks[b_no][0] = b_line[0];
result_blocks[b_no][1] = b_line[2];
}
uint64_t current_index = 2;
#define PERFORME_SIMULATION_FOR_FUNCTION(func_name, window_size, cut_old, cut_new ) \
perform_simulation_for_function(timestamp_to_hashrate, current_index, blocks, result_blocks, \
[&](std::vector<uint64_t>& timestamps, std::vector<currency::wide_difficulty_type>& cumulative_difficulties, size_t target_seconds) \
{ \
return func_name(timestamps, cumulative_difficulties, target_seconds, window_size, cut_old, cut_new); \
}); \
current_index+=2;
2019-02-06 13:50:51 +03:00
#define PERFORME_SIMULATION_FOR_FUNCTION_NO_WINDOW(func_name) \
perform_simulation_for_function(timestamp_to_hashrate, current_index, blocks, result_blocks, \
[&](std::vector<uint64_t>& timestamps, std::vector<currency::wide_difficulty_type>& cumulative_difficulties, size_t target_seconds) \
{ \
return func_name(timestamps, cumulative_difficulties, target_seconds); \
}); \
current_index+=2;
PERFORME_SIMULATION_FOR_FUNCTION(bbr_next_difficulty_configurable, BBR_DIFFICULTY_WINDOW, BBR_DIFFICULTY_CUT, BBR_DIFFICULTY_CUT);
PERFORME_SIMULATION_FOR_FUNCTION(bbr_next_difficulty_configurable, 500, 60, 60);
PERFORME_SIMULATION_FOR_FUNCTION(bbr_next_difficulty_configurable, 300, 60, 60);
PERFORME_SIMULATION_FOR_FUNCTION_NO_WINDOW(currency::next_difficulty);
2019-02-06 13:50:51 +03:00
print_blocks(result_blocks, path + "result.txt");
LOG_PRINT_L0("Done");
}
void run_difficulty_analysis(const std::string& path)
{
//hash_rate_analysis(path);
run_emulation(path);
}
void hash_rate_analysis(const std::string& path)
{
//0 = height, 1 - timestamp, 2 - difficulty, 3 cumulative_diff
std::vector<std::vector<uint64_t>> blocks;
parse_file(path, blocks, 140000);
2019-01-23 13:36:48 +03:00
LOG_PRINT_L0("Calculating hashrate...");
std::stringstream ss;
uint64_t curren_hashrate = 0;
uint64_t step = 10;
uint64_t hash_rate_range = 10;
uint64_t second_windowf_or_hashrate = 20*60;
for (size_t i = hash_rate_range; i != blocks.size(); i++)
{
if (i % step == 0)
{
//curren_hashrate = (blocks[i][3] - blocks[i - hash_rate_range][3])/(blocks[i][1] - blocks[i- hash_rate_range][1]);
// uint64_t cumul_dif = 0;
// for (size_t j = i; j != 0 && blocks[j][1] > blocks[i][1]- second_windowf_or_hashrate; j--)
// {
// cumul_dif += blocks[j][2];
// }
// curren_hashrate = cumul_dif / second_windowf_or_hashrate;
curren_hashrate = (blocks[i][3] - blocks[i - hash_rate_range][3]) / (blocks[i][1] - blocks[i - hash_rate_range][1]);
//std::setw(45) << epee::misc_utils::get_time_str(blocks[i][1])
ss << std::left << std::setw(10) << i << std::left << std::setw(15) << blocks[i][1] << std::left << std::setw(15) << blocks[i][2]/120 << std::left << std::setw(20) << curren_hashrate << ENDL;
}
//blocks[i][4] = curren_hashrate;
//ss << std::left << std::setw(10) << i << std::left << std::setw(15) << blocks[i][2] << std::left << std::setw(20) << blocks[i][4] << ENDL;
}
std::string res_path = path + "hashrate.txt";
file_io_utils::save_string_to_file(res_path, ss.str());
LOG_PRINT_L0("Done, saved to file " << res_path);
2019-01-23 13:36:48 +03:00
return;
}