forked from lthn/blockchain
crypto: range proofs major refactoring, crypto traits refactored, calc_exp_power_of_2_upper_bound changed to constexpr analogs
This commit is contained in:
parent
319d53f7cf
commit
10141c3dfc
5 changed files with 921 additions and 715 deletions
698
src/crypto/range_proof_bpp.h
Normal file
698
src/crypto/range_proof_bpp.h
Normal file
|
|
@ -0,0 +1,698 @@
|
|||
// Copyright (c) 2021-2022 Zano Project (https://zano.org/)
|
||||
// Copyright (c) 2021-2022 sowle (val@zano.org, crypto.sowle@gmail.com)
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
#pragma once
|
||||
|
||||
//
|
||||
// This file contains the implementation of range proof protocol.
|
||||
// Namely, Bulletproofs+ https://eprint.iacr.org/2020/735
|
||||
//
|
||||
|
||||
namespace crypto
|
||||
{
|
||||
struct bpp_signature
|
||||
{
|
||||
std::vector<public_key> L; // size = ceil( log_2(m * n) )
|
||||
std::vector<public_key> R;
|
||||
public_key A0;
|
||||
public_key A;
|
||||
public_key B;
|
||||
scalar_t r;
|
||||
scalar_t s;
|
||||
scalar_t delta;
|
||||
};
|
||||
|
||||
#define DBG_VAL_PRINT(x) std::cout << #x ": " << x << ENDL
|
||||
#define DBG_PRINT(x) std::cout << x << ENDL
|
||||
|
||||
template<typename CT>
|
||||
bool bpp_gen(const scalar_vec_t& values, const scalar_vec_t& masks, bpp_signature& sig, std::vector<point_t>& commitments, uint8_t* p_err = nullptr)
|
||||
{
|
||||
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
|
||||
if (!(cond)) { LOG_PRINT_RED("bpp_gen: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
|
||||
if (p_err) { *p_err = err_code; } return false; }
|
||||
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(values.size() > 0 && values.size() <= CT::c_bpp_values_max && values.size() == masks.size(), 1);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(masks.is_reduced(), 3);
|
||||
|
||||
const size_t c_bpp_log2_m = constexpr_ceil_log2(values.size());
|
||||
const size_t c_bpp_m = 1ull << c_bpp_log2_m;
|
||||
const size_t c_bpp_mn = c_bpp_m * CT::c_bpp_n;
|
||||
const size_t c_bpp_log2_mn = c_bpp_log2_m + CT::c_bpp_log2_n;
|
||||
|
||||
// pre-multiply all output points by c_scalar_1div8
|
||||
// in order to enforce these points to be in the prime-order subgroup (after mul by 8 in bpp_verify())
|
||||
|
||||
// calc commitments vector as commitments[i] = 1/8 * values[i] * G + 1/8 * masks[i] * H
|
||||
commitments.resize(values.size());
|
||||
for (size_t i = 0; i < values.size(); ++i)
|
||||
CT::calc_pedersen_commitment(values[i] * c_scalar_1div8, masks[i] * c_scalar_1div8, commitments[i]);
|
||||
|
||||
|
||||
// s.a. BP+ paper, page 15, eq. 11
|
||||
// decompose v into aL and aR:
|
||||
// v = aL o (1, 2, 2^2, ..., 2^n-1), o - component-wise product aka Hadamard product
|
||||
// aR = aL - (1, 1, ... 1)
|
||||
// aR o aL = 0
|
||||
|
||||
// aLs = (aL_0, aL_1, ..., aL_m-1) -- `bit` matrix of c_bpp_m x c_bpp_n, each element is a scalar
|
||||
|
||||
scalar_mat_t<CT::c_bpp_n> aLs(c_bpp_mn), aRs(c_bpp_mn);
|
||||
aLs.zero();
|
||||
aRs.zero();
|
||||
// m >= values.size, first set up [0..values.size-1], then -- [values.size..m-1] (padding area)
|
||||
for (size_t i = 0; i < values.size(); ++i)
|
||||
{
|
||||
const scalar_t& v = values[i];
|
||||
for (size_t j = 0; j < CT::c_bpp_n; ++j)
|
||||
{
|
||||
if (v.get_bit(j))
|
||||
aLs(i, j) = c_scalar_1; // aL = 1, aR = 0
|
||||
else
|
||||
aRs(i, j) = c_scalar_Lm1; // aL = 0, aR = -1
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t i = values.size(); i < c_bpp_m; ++i)
|
||||
for (size_t j = 0; j < CT::c_bpp_n; ++j)
|
||||
aRs(i, j) = c_scalar_Lm1; // aL = 0, aR = -1
|
||||
|
||||
|
||||
// using e as Fiat-Shamir transcript
|
||||
scalar_t e = CT::get_initial_transcript();
|
||||
DBG_PRINT("initial transcript: " << e);
|
||||
|
||||
hash_helper_t::hs_t hsc;
|
||||
CT::update_transcript(hsc, e, commitments);
|
||||
|
||||
// BP+ paper, page 15: The prover begins with sending A = g^aL h^aR h^alpha (group element)
|
||||
// so we calculate A0 = alpha * H + SUM(aL_i * G_i) + SUM(aR_i * H_i)
|
||||
|
||||
scalar_t alpha = scalar_t::random();
|
||||
point_t A0 = alpha * CT::bpp_H;
|
||||
|
||||
for (size_t i = 0; i < c_bpp_mn; ++i)
|
||||
A0 += aLs[i] * CT::get_generator(false, i) + aRs[i] * CT::get_generator(true, i);
|
||||
|
||||
// part of 1/8 defense scheme
|
||||
A0 *= c_scalar_1div8;
|
||||
A0.to_public_key(sig.A0);
|
||||
|
||||
DBG_VAL_PRINT(alpha);
|
||||
DBG_VAL_PRINT(A0);
|
||||
|
||||
// calculate scalar challenges y and z
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.A0);
|
||||
scalar_t y = hsc.calc_hash();
|
||||
scalar_t z = hash_helper_t::hs(y);
|
||||
e = z; // transcript for further steps
|
||||
DBG_VAL_PRINT(y);
|
||||
DBG_VAL_PRINT(z);
|
||||
|
||||
// Computing vector d for aggregated version of the protocol (BP+ paper, page 17)
|
||||
// (note: elements is stored column-by-column in memory)
|
||||
// d = | 1 * z^(2*1), 1 * z^(2*2), 1 * z^(2*3), ..., 1 * z^(2*m) |
|
||||
// | 2 * z^(2*1), 2 * z^(2*2), 2 * z^(2*3), ..., 2 * z^(2*m) |
|
||||
// | 4 * z^(2*1), 4 * z^(2*2), 4 * z^(2*3), ..., 4 * z^(2*m) |
|
||||
// | ....................................................................................... |
|
||||
// | 2^(n-1) * z^(2*1), 2^(n-1) * z^(2*2), 2^(n-1) * z^(2*3), ..., 2^(n-1) * z^(2*m)) |
|
||||
// Note: sum(d_i) = (2^n - 1) * ((z^2)^1 + (z^2)^2 + ... (z^2)^m)) = (2^n-1) * sum_of_powers(x^2, log(m))
|
||||
|
||||
scalar_t z_sq = z * z;
|
||||
scalar_mat_t<CT::c_bpp_n> d(c_bpp_mn);
|
||||
d(0, 0) = z_sq;
|
||||
// first row
|
||||
for (size_t i = 1; i < c_bpp_m; ++i)
|
||||
d(i, 0) = d(i - 1, 0) * z_sq;
|
||||
// all rows
|
||||
for (size_t j = 1; j < CT::c_bpp_n; ++j)
|
||||
for (size_t i = 0; i < c_bpp_m; ++i)
|
||||
d(i, j) = d(i, j - 1) + d(i, j - 1);
|
||||
|
||||
DBG_PRINT("Hs(d): " << d.calc_hs());
|
||||
|
||||
// calculate extended Vandermonde vector y = (1, y, y^2, ..., y^(mn+1)) (BP+ paper, page 18, Fig. 3)
|
||||
// (calculate two more elements (1 and y^(mn+1)) for convenience)
|
||||
scalar_vec_t y_powers(c_bpp_mn + 2);
|
||||
y_powers[0] = 1;
|
||||
for (size_t i = 1; i <= c_bpp_mn + 1; ++i)
|
||||
y_powers[i] = y_powers[i - 1] * y;
|
||||
|
||||
const scalar_t& y_mn_p1 = y_powers[c_bpp_mn + 1];
|
||||
|
||||
DBG_PRINT("Hs(y_powers): " << y_powers.calc_hs());
|
||||
|
||||
// aL_hat = aL - 1*z
|
||||
scalar_vec_t aLs_hat = aLs - z;
|
||||
// aL_hat = aR + d o y^leftarr + 1*z where y^leftarr = (y^n, y^(n-1), ..., y) (BP+ paper, page 18, Fig. 3)
|
||||
scalar_vec_t aRs_hat = aRs + z;
|
||||
for (size_t i = 0; i < c_bpp_mn; ++i)
|
||||
aRs_hat[i] += d[i] * y_powers[c_bpp_mn - i];
|
||||
|
||||
DBG_PRINT("Hs(aLs_hat): " << aLs_hat.calc_hs());
|
||||
DBG_PRINT("Hs(aRs_hat): " << aRs_hat.calc_hs());
|
||||
|
||||
// calculate alpha_hat
|
||||
// alpha_hat = alpha + SUM(z^(2j) * gamma_j * y^(mn+1)) for j = 1..m
|
||||
// i.e. \hat{\alpha} = \alpha + y^{m n+1} \sum_{j = 1}^{m} z^{2j} \gamma_j
|
||||
scalar_t alpha_hat = 0;
|
||||
for (size_t i = 0; i < masks.size(); ++i)
|
||||
alpha_hat += d(i, 0) * masks[i];
|
||||
alpha_hat = alpha + y_mn_p1 * alpha_hat;
|
||||
|
||||
DBG_VAL_PRINT(alpha_hat);
|
||||
|
||||
// calculate y^-1, y^-2, ...
|
||||
const scalar_t y_inverse = y.reciprocal();
|
||||
scalar_vec_t y_inverse_powers(c_bpp_mn / 2 + 1); // the greatest power we need is c_bpp_mn/2 (at the first reduction round)
|
||||
y_inverse_powers[0] = 1;
|
||||
for (size_t i = 1, size = y_inverse_powers.size(); i < size; ++i)
|
||||
y_inverse_powers[i] = y_inverse_powers[i - 1] * y_inverse;
|
||||
|
||||
// prepare generator's vector
|
||||
std::vector<point_t> g(c_bpp_mn), h(c_bpp_mn);
|
||||
for (size_t i = 0; i < c_bpp_mn; ++i)
|
||||
{
|
||||
g[i] = CT::get_generator(false, i);
|
||||
h[i] = CT::get_generator(true, i);
|
||||
}
|
||||
|
||||
// WIP zk-argument called with zk-WIP(g, h, G, H, A_hat, aL_hat, aR_hat, alpha_hat)
|
||||
|
||||
scalar_vec_t& a = aLs_hat;
|
||||
scalar_vec_t& b = aRs_hat;
|
||||
|
||||
sig.L.resize(c_bpp_log2_mn);
|
||||
sig.R.resize(c_bpp_log2_mn);
|
||||
|
||||
// zk-WIP reduction rounds (s.a. the preprint page 13 Fig. 1)
|
||||
for (size_t n = c_bpp_mn / 2, ni = 0; n >= 1; n /= 2, ++ni)
|
||||
{
|
||||
DBG_PRINT(ENDL << "#" << ni);
|
||||
|
||||
// zk-WIP(g, h, G, H, P, a, b, alpha)
|
||||
|
||||
scalar_t dL = scalar_t::random();
|
||||
DBG_VAL_PRINT(dL);
|
||||
scalar_t dR = scalar_t::random();
|
||||
DBG_VAL_PRINT(dR);
|
||||
|
||||
// a = (a1, a2), b = (b1, b2) -- vectors of scalars
|
||||
// cL = <a1, ((y, y^2, ...) o b2)> -- scalar
|
||||
scalar_t cL = 0;
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
cL += a[i] * y_powers[i + 1] * b[n + i];
|
||||
|
||||
DBG_VAL_PRINT(cL);
|
||||
|
||||
// cR = <a2, ((y, y^2, ...) o b1)> * y^n -- scalar
|
||||
scalar_t cR = 0;
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
cR += a[n + i] * y_powers[i + 1] * b[i];
|
||||
cR *= y_powers[n];
|
||||
|
||||
DBG_VAL_PRINT(cR);
|
||||
|
||||
// L = y^-n * a1 * g2 + b2 * h1 + cL * G + dL * H -- point
|
||||
point_t sum = c_point_0;
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
sum += a[i] * g[n + i];
|
||||
point_t L;
|
||||
CT::calc_pedersen_commitment(cL, dL, L);
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
L += b[n + i] * h[i];
|
||||
L += y_inverse_powers[n] * sum;
|
||||
L *= c_scalar_1div8;
|
||||
DBG_VAL_PRINT(L);
|
||||
|
||||
// R = y^n * a2 * g1 + b1 * h2 + cR * G + dR * H -- point
|
||||
sum.zero();
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
sum += a[n + i] * g[i];
|
||||
point_t R;
|
||||
CT::calc_pedersen_commitment(cR, dR, R);
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
R += b[i] * h[n + i];
|
||||
R += y_powers[n] * sum;
|
||||
R *= c_scalar_1div8;
|
||||
DBG_VAL_PRINT(R);
|
||||
|
||||
// put L, R to the sig
|
||||
L.to_public_key(sig.L[ni]);
|
||||
R.to_public_key(sig.R[ni]);
|
||||
|
||||
// update the transcript
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.L[ni]);
|
||||
hsc.add_pub_key(sig.R[ni]);
|
||||
e = hsc.calc_hash();
|
||||
DBG_VAL_PRINT(e);
|
||||
|
||||
// recalculate arguments for the next round
|
||||
scalar_t e_squared = e * e;
|
||||
scalar_t e_inverse = e.reciprocal();
|
||||
scalar_t e_inverse_squared = e_inverse * e_inverse;
|
||||
scalar_t e_y_inv_n = e * y_inverse_powers[n];
|
||||
scalar_t e_inv_y_n = e_inverse * y_powers[n];
|
||||
|
||||
// g_hat = e^-1 * g1 + (e * y^-n) * g2 -- vector of points
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
g[i] = e_inverse * g[i] + e_y_inv_n * g[n + i];
|
||||
|
||||
// h_hat = e * h1 + e^-1 * h2 -- vector of points
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
h[i] = e * h[i] + e_inverse * h[n + i];
|
||||
|
||||
// P_hat = e^2 * L + P + e^-2 * R -- point
|
||||
|
||||
// a_hat = e * a1 + e^-1 * y^n * a2 -- vector of scalars
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
a[i] = e * a[i] + e_inv_y_n * a[n + i];
|
||||
|
||||
// b_hat = e^-1 * b1 + e * b2 -- vector of scalars
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
b[i] = e_inverse * b[i] + e * b[n + i];
|
||||
|
||||
// alpha_hat = e^2 * dL + alpha + e^-2 * dR -- scalar
|
||||
alpha_hat += e_squared * dL + e_inverse_squared * dR;
|
||||
|
||||
// run next iteraton zk-WIP(g_hat, h_hat, G, H, P_hat, a_hat, b_hat, alpha_hat)
|
||||
}
|
||||
DBG_PRINT("");
|
||||
|
||||
// zk-WIP last round
|
||||
scalar_t r = scalar_t::random();
|
||||
scalar_t s = scalar_t::random();
|
||||
scalar_t delta = scalar_t::random();
|
||||
scalar_t eta = scalar_t::random();
|
||||
DBG_VAL_PRINT(r);
|
||||
DBG_VAL_PRINT(s);
|
||||
DBG_VAL_PRINT(delta);
|
||||
DBG_VAL_PRINT(eta);
|
||||
|
||||
// A = r * g + s * h + (r y b + s y a) * G + delta * H -- point
|
||||
point_t A = c_point_0;
|
||||
CT::calc_pedersen_commitment(y * (r * b[0] + s * a[0]), delta, A);
|
||||
A += r * g[0] + s * h[0];
|
||||
A *= c_scalar_1div8;
|
||||
A.to_public_key(sig.A);
|
||||
DBG_VAL_PRINT(A);
|
||||
|
||||
// B = (r * y * s) * G + eta * H
|
||||
point_t B = c_point_0;
|
||||
CT::calc_pedersen_commitment(r * y * s, eta, B);
|
||||
B *= c_scalar_1div8;
|
||||
B.to_public_key(sig.B);
|
||||
DBG_VAL_PRINT(B);
|
||||
|
||||
// update the transcript
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.A);
|
||||
hsc.add_pub_key(sig.B);
|
||||
e = hsc.calc_hash();
|
||||
DBG_VAL_PRINT(e);
|
||||
|
||||
// finalize the signature
|
||||
sig.r = r + e * a[0];
|
||||
sig.s = s + e * b[0];
|
||||
sig.delta = eta + e * delta + e * e * alpha_hat;
|
||||
DBG_VAL_PRINT(sig.r);
|
||||
DBG_VAL_PRINT(sig.s);
|
||||
DBG_VAL_PRINT(sig.delta);
|
||||
|
||||
return true;
|
||||
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
|
||||
} // bpp_gen()
|
||||
|
||||
|
||||
struct bpp_sig_commit_ref_t
|
||||
{
|
||||
bpp_sig_commit_ref_t(const bpp_signature& sig, const std::vector<point_t>& commitments)
|
||||
: sig(sig)
|
||||
, commitments(commitments)
|
||||
{}
|
||||
const bpp_signature& sig;
|
||||
const std::vector<point_t>& commitments;
|
||||
};
|
||||
|
||||
|
||||
template<typename CT>
|
||||
bool bpp_verify(const std::vector<bpp_sig_commit_ref_t>& sigs, uint8_t* p_err = nullptr)
|
||||
{
|
||||
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
|
||||
if (!(cond)) { LOG_PRINT_RED("bpp_verify: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
|
||||
if (p_err) { *p_err = err_code; } return false; }
|
||||
|
||||
DBG_PRINT(ENDL << " . . . . bpp_verify() . . . . ");
|
||||
|
||||
const size_t kn = sigs.size();
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(kn > 0, 1);
|
||||
|
||||
struct intermediate_element_t
|
||||
{
|
||||
scalar_t y;
|
||||
scalar_t z;
|
||||
scalar_t z_sq;
|
||||
scalar_vec_t e;
|
||||
scalar_vec_t e_sq;
|
||||
scalar_t e_final;
|
||||
scalar_t e_final_sq;
|
||||
size_t inv_e_offset; // offset in batch_for_inverse
|
||||
size_t inv_y_offset; // offset in batch_for_inverse
|
||||
size_t c_bpp_log2_m;
|
||||
size_t c_bpp_m;
|
||||
size_t c_bpp_mn;
|
||||
point_t A;
|
||||
point_t A0;
|
||||
point_t B;
|
||||
std::vector<point_t> L;
|
||||
std::vector<point_t> R;
|
||||
};
|
||||
std::vector<intermediate_element_t> interms(kn);
|
||||
|
||||
size_t c_bpp_log2_m_max = 0;
|
||||
for (size_t k = 0; k < kn; ++k)
|
||||
{
|
||||
const bpp_sig_commit_ref_t& bsc = sigs[k];
|
||||
const bpp_signature& sig = bsc.sig;
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(bsc.commitments.size() > 0, 2);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sig.L.size() > 0 && sig.L.size() == sig.R.size(), 3);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sig.r.is_reduced() && sig.s.is_reduced() && sig.delta.is_reduced(), 4);
|
||||
|
||||
intermediate_element_t& interm = interms[k];
|
||||
interm.c_bpp_log2_m = constexpr_ceil_log2(bsc.commitments.size());
|
||||
if (c_bpp_log2_m_max < interm.c_bpp_log2_m)
|
||||
c_bpp_log2_m_max = interm.c_bpp_log2_m;
|
||||
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sig.L.size() == interm.c_bpp_log2_m + CT::c_bpp_log2_n, 5);
|
||||
|
||||
interm.c_bpp_m = 1ull << interm.c_bpp_log2_m;
|
||||
interm.c_bpp_mn = interm.c_bpp_m * CT::c_bpp_n;
|
||||
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.A0.from_public_key(sig.A0), 6);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.A.from_public_key(sig.A), 7);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.B.from_public_key(sig.B), 8);
|
||||
interm.L.resize(sig.L.size());
|
||||
interm.R.resize(sig.R.size());
|
||||
for (size_t i = 0; i < interm.L.size(); ++i)
|
||||
{
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.L[i].from_public_key(sig.L[i]), 9);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.R[i].from_public_key(sig.R[i]), 10);
|
||||
}
|
||||
}
|
||||
const size_t c_bpp_m_max = 1ull << c_bpp_log2_m_max;
|
||||
const size_t c_bpp_mn_max = c_bpp_m_max * CT::c_bpp_n;
|
||||
const size_t c_bpp_LR_size_max = c_bpp_log2_m_max + CT::c_bpp_log2_n;
|
||||
|
||||
|
||||
//
|
||||
// prepare stuff
|
||||
//
|
||||
/*
|
||||
std::vector<point_t> g(c_bpp_mn_max), h(c_bpp_mn_max);
|
||||
for (size_t i = 0; i < c_bpp_mn_max; ++i)
|
||||
{
|
||||
g[i] = CT::get_generator(false, i);
|
||||
h[i] = CT::get_generator(true, i);
|
||||
}
|
||||
*/
|
||||
|
||||
scalar_vec_t batch_for_inverse;
|
||||
batch_for_inverse.reserve(kn + kn * c_bpp_LR_size_max);
|
||||
|
||||
|
||||
for (size_t k = 0; k < kn; ++k)
|
||||
{
|
||||
DBG_PRINT(ENDL << "SIG #" << k);
|
||||
const bpp_sig_commit_ref_t& bsc = sigs[k];
|
||||
const bpp_signature& sig = bsc.sig;
|
||||
intermediate_element_t& interm = interms[k];
|
||||
|
||||
// restore y and z
|
||||
// using e as Fiat-Shamir transcript
|
||||
scalar_t e = CT::get_initial_transcript();
|
||||
DBG_PRINT("initial transcript: " << e);
|
||||
hash_helper_t::hs_t hsc;
|
||||
CT::update_transcript(hsc, e, bsc.commitments);
|
||||
// calculate scalar challenges y and z
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.A0);
|
||||
hsc.assign_calc_hash(interm.y);
|
||||
interm.z = hash_helper_t::hs(interm.y);
|
||||
interm.z_sq = interm.z * interm.z;
|
||||
DBG_VAL_PRINT(interm.y);
|
||||
DBG_VAL_PRINT(interm.z);
|
||||
e = interm.z; // transcript for further steps
|
||||
|
||||
interm.inv_y_offset = batch_for_inverse.size();
|
||||
batch_for_inverse.push_back(interm.y);
|
||||
interm.inv_e_offset = batch_for_inverse.size();
|
||||
|
||||
interm.e.resize(sig.L.size());
|
||||
interm.e_sq.resize(sig.L.size());
|
||||
|
||||
for (size_t i = 0; i < sig.L.size(); ++i)
|
||||
{
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.L[i]);
|
||||
hsc.add_pub_key(sig.R[i]);
|
||||
hsc.assign_calc_hash(e);
|
||||
interm.e[i] = e;
|
||||
interm.e_sq[i] = e * e;
|
||||
DBG_PRINT("e[" << i << "]: " << e);
|
||||
batch_for_inverse.push_back(e);
|
||||
}
|
||||
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.A);
|
||||
hsc.add_pub_key(sig.B);
|
||||
hsc.assign_calc_hash(interm.e_final);
|
||||
interm.e_final_sq = interm.e_final * interm.e_final;
|
||||
DBG_VAL_PRINT(interm.e_final);
|
||||
}
|
||||
|
||||
batch_for_inverse.invert();
|
||||
|
||||
// Notation:
|
||||
// 1_vec ^ n = (1, 1, 1, ..., 1)
|
||||
// 2_vec ^ n = (2^0, 2^1, 2^2, ..., 2^(n-1))
|
||||
// -1_vec ^ n = ((-1)^0, (-1)^1, (-1)^2, ... (-1)^(n-1)) = (1, -1, 1, -1, ...)
|
||||
// y<^n = (y^n, y^(n-1), ..., y^1)
|
||||
// y>^n = (y^1, y^2, ..., y^n)
|
||||
|
||||
// from page 13, Fig 1:
|
||||
// Verifier outputs Accept IFF the following equality holds (single proof):
|
||||
// P^e^2 * A^e * B == g ^ (r' e) * h ^ (s' e) * G ^ (r' y s') * H ^ delta'
|
||||
// (where g and h are calculated in each round)
|
||||
// The same equation in additive notation:
|
||||
// e^2 * P + e * A + B == (r' * e) * g + (s' * e) * h + (r' y s') * G + delta' * H
|
||||
// <=>
|
||||
// (r' * e) * g + (s' * e) * h + (r' y s') * G + delta' * H - e^2 * P - e * A - B == 0 (*)
|
||||
// where A, B, r', s', delta' is taken from the signature
|
||||
// and P_{k+1} = e^2 * L_k + P_k + e^-2 * R_k for all rounds
|
||||
//
|
||||
// from page 18, Fig 3:
|
||||
// P and V computes:
|
||||
// A_hat = A0 + (- 1^(mn) * z) * g + (d o y<^(mn) + 1^(mn) * z) * h +
|
||||
// + y^(mn+1) * (SUM{j=1..m} z^(2j) * V_j) +
|
||||
// + (z*SUM(y^>mn) - z*y^(mn+1)*SUM(d) - z^2 * SUM(y^>mn)) * G
|
||||
// (calculated once)
|
||||
//
|
||||
// As suggested in Section 6.1 "Practical Optimizations":
|
||||
// 1) g and h exponentianions can be optimized in order not to be calculated at each round as the following (page 20):
|
||||
//
|
||||
// (r' * e * s_vec) * g + (s' * e * s'_vec) * h + (r' y s') * G + delta' * H -
|
||||
// - e^2 * A_hat
|
||||
// - SUM{j=1..log(n)}(e_final^2 * e_j^2 * L_j + e_final^2 * e_j^-2 * R_j)
|
||||
// - e * A - B = 0 (**)
|
||||
//
|
||||
// where:
|
||||
// g, h - vector of fixed generators
|
||||
// s_vec_i = y^(1-i) * PROD{j=1..log(n)}(e_j ^ b(i,j))
|
||||
// s'_vec_i = PROD{j=1..log(n)}(e_j ^ -b(i,j))
|
||||
// b(i, j) = { 2 * ((1<<(j-1)) & (i-1)) - 1) (counting both from 1) (page 20)
|
||||
// b(i, j) = { 2 * ((1<<j) & i) - 1) (counting both from 0)
|
||||
//
|
||||
// 2) we gonna aggregate all (**) for each round by multiplying them to a random weights and then sum up
|
||||
// insert A_hat into (**) =>
|
||||
|
||||
// (r' * e * s_vec) * g + (s' * e * s'_vec) * h + (r' y s') * G + delta' * H -
|
||||
// - e^2 * (A0 + (- 1^(mn) * z) * g + (d o y<^(mn) + 1^(mn) * z) * h +
|
||||
// + y^(mn+1) * (SUM{j=1..m} z^(2j) * V_j) +
|
||||
// + (z*SUM(y^>mn) - z*y^(mn+1)*SUM(d) - z^2 * SUM(y^>mn)) * G
|
||||
// )
|
||||
// - SUM{j=1..log(n)}(e_final^2 * e_j^2 * L_j + e_final^2 * e_j^-2 * R_j)
|
||||
// - e * A - B = 0
|
||||
|
||||
// =>
|
||||
|
||||
// (for single signature)
|
||||
//
|
||||
// (r' * e * s_vec - e^2 * (- 1_vec^(mn) * z)) * g | these are
|
||||
// + (s' * e * s'_vec - e^2 * (d o y<^(mn) + 1_vec^(mn) * z)) * h | fixed generators
|
||||
// + (r' y s' - e^2 * ((z - z^2)*SUM(y^>mn) - z*y^(mn+1)*SUM(d)) * G | across all
|
||||
// + delta' * H | the signatures
|
||||
//
|
||||
// - e^2 * A0
|
||||
// - e^2 * y^(mn+1) * (SUM{j=1..m} z^(2j) * V_j))
|
||||
// - e^2 * SUM{j=1..log(n)}(e_j^2 * L_j + e_j^-2 * R_j)
|
||||
// - e * A - B = 0 (***)
|
||||
//
|
||||
// All (***) will be muptiplied by random weightning factor and then summed up.
|
||||
|
||||
// Calculate cummulative sclalar multiplicand for fixed generators across all the sigs.
|
||||
scalar_vec_t g_scalars;
|
||||
g_scalars.resize(c_bpp_mn_max, 0);
|
||||
scalar_vec_t h_scalars;
|
||||
h_scalars.resize(c_bpp_mn_max, 0);
|
||||
scalar_t G_scalar = 0;
|
||||
scalar_t H_scalar = 0;
|
||||
point_t summand = c_point_0;
|
||||
|
||||
for (size_t k = 0; k < kn; ++k)
|
||||
{
|
||||
DBG_PRINT(ENDL << "SIG #" << k);
|
||||
const bpp_sig_commit_ref_t& bsc = sigs[k];
|
||||
const bpp_signature& sig = bsc.sig;
|
||||
intermediate_element_t& interm = interms[k];
|
||||
|
||||
// random weightning factor for speed-optimized batch verification (preprint page 20)
|
||||
const scalar_t rwf = scalar_t::random();
|
||||
DBG_PRINT("rwf: " << rwf);
|
||||
|
||||
// prepare d vector (see also d structure description in proof function)
|
||||
scalar_mat_t<CT::c_bpp_n> d(interm.c_bpp_mn);
|
||||
d(0, 0) = interm.z_sq;
|
||||
// first row
|
||||
for (size_t i = 1; i < interm.c_bpp_m; ++i)
|
||||
d(i, 0) = d(i - 1, 0) * interm.z_sq;
|
||||
// all rows
|
||||
for (size_t j = 1; j < CT::c_bpp_n; ++j)
|
||||
for (size_t i = 0; i < interm.c_bpp_m; ++i)
|
||||
d(i, j) = d(i, j - 1) + d(i, j - 1);
|
||||
// sum(d) (see also note in proof function for this)
|
||||
static const scalar_t c_scalar_2_power_n_minus_1 = { 0xffffffffffffffff, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000 };
|
||||
const scalar_t sum_d = c_scalar_2_power_n_minus_1 * sum_of_powers(interm.z_sq, interm.c_bpp_log2_m);
|
||||
|
||||
DBG_PRINT("Hs(d): " << d.calc_hs());
|
||||
DBG_PRINT("sum(d): " << sum_d);
|
||||
|
||||
const scalar_t& y_inv = batch_for_inverse[interm.inv_y_offset];
|
||||
auto get_e_inv = [&](size_t i) { return batch_for_inverse[interm.inv_e_offset + i]; }; // i belongs to [0; L.size()-1]
|
||||
|
||||
// prepare s_vec (unlike the paper here we moved y-component out of s_vec for convenience, so s_vec'[x] = s_vec[~x & (MN-1)])
|
||||
// complexity (sc_mul's): MN+2*log2(MN)-2
|
||||
// the idea is the following:
|
||||
// s_vec[00000b] = ... * (e_4)^-1 * (e_3)^-1 * (e_2)^-1 * (e_1)^-1 * (e_0)^-1
|
||||
// s_vec[00101b] = ... * (e_4)^-1 * (e_3)^-1 * (e_2)^+1 * (e_1)^-1 * (e_0)^+1
|
||||
const size_t log2_mn = sig.L.size(); // at the beginning we made sure that sig.L.size() == c_bpp_log2_m + c_bpp_log2_n
|
||||
scalar_vec_t s_vec(interm.c_bpp_mn);
|
||||
s_vec[0] = get_e_inv(0);
|
||||
for (size_t i = 1; i < log2_mn; ++i)
|
||||
s_vec[0] *= get_e_inv(i); // s_vec[0] = (e_0)^-1 * (e_1)^-1 * .. (e_{log2_mn-1})^-1
|
||||
DBG_PRINT("[0] " << s_vec[0]);
|
||||
for (size_t i = 1; i < interm.c_bpp_mn; ++i)
|
||||
{
|
||||
size_t base_el_index = i & (i - 1); // base element index: 0, 0, 2, 0, 4, 4, 6, 0, 8, 8, 10... base element differs in one bit (0) from the current one (1)
|
||||
size_t bit_index = log2_mn - calc_lsb_32((uint32_t)i) - 1; // the bit index where current element has the difference with the base
|
||||
s_vec[i] = s_vec[base_el_index] * interm.e_sq[bit_index]; // (e_j)^-1 * (e_j)^2 = (e_j)^+1
|
||||
DBG_PRINT("[" << i << "] " << " " << base_el_index << ", " << bit_index << " : " << s_vec[i]);
|
||||
}
|
||||
|
||||
// prepare y_inv vector
|
||||
scalar_vec_t y_inverse_powers(interm.c_bpp_mn);
|
||||
y_inverse_powers[0] = 1;
|
||||
for (size_t i = 1; i < interm.c_bpp_mn; ++i)
|
||||
y_inverse_powers[i] = y_inverse_powers[i - 1] * y_inv;
|
||||
|
||||
// y^(mn+1)
|
||||
scalar_t y_power_mnp1 = interm.y;
|
||||
for (size_t i = 0; i < log2_mn; ++i)
|
||||
y_power_mnp1 *= y_power_mnp1;
|
||||
y_power_mnp1 *= interm.y;
|
||||
DBG_VAL_PRINT(y_power_mnp1);
|
||||
|
||||
// now calculate all multiplicands for common generators
|
||||
|
||||
// g vector multiplicands:
|
||||
// rwf * (r' * e * (1, y^-1, y^-2, ...) o s_vec + e^2 * z) =
|
||||
// rwf * r' * e * ((1, y^-1, ...) o s_vec) + rwf * e^2 * z * (1, 1, ...)
|
||||
scalar_t rwf_e_sq_z = rwf * interm.e_final_sq * interm.z;
|
||||
scalar_t rwf_r_e = rwf * interm.e_final * sig.r;
|
||||
for (size_t i = 0; i < interm.c_bpp_mn; ++i)
|
||||
g_scalars[i] += rwf_r_e * y_inverse_powers[i] * s_vec[i] + rwf_e_sq_z;
|
||||
|
||||
DBG_PRINT("Hs(g_scalars): " << g_scalars.calc_hs());
|
||||
|
||||
// h vector multiplicands:
|
||||
// rwf * (s' * e * s'_vec - e^2 * (d o y<^(mn) + 1_vec^(mn) * z))
|
||||
// rwf * s' * e * s'_vec - rwf * e^2 * z * (1, 1...) - rwf * e^2 * (d o y<^(mn))
|
||||
//scalar_t rwf_e_sq_z = rwf * interm.e_final_sq * interm.z;
|
||||
scalar_t rwf_s_e = rwf * sig.s * interm.e_final;
|
||||
scalar_t rwf_e_sq_y = rwf * interm.e_final_sq * interm.y;
|
||||
for (size_t i = interm.c_bpp_mn - 1; i != SIZE_MAX; --i)
|
||||
{
|
||||
h_scalars[i] += rwf_s_e * s_vec[interm.c_bpp_mn - 1 - i] - rwf_e_sq_z - rwf_e_sq_y * d[i];
|
||||
rwf_e_sq_y *= interm.y;
|
||||
}
|
||||
|
||||
DBG_PRINT("Hs(h_scalars): " << h_scalars.calc_hs());
|
||||
|
||||
// G point multiplicands:
|
||||
// rwf * (r' y s' - e ^ 2 * ((z - z ^ 2)*SUM(y^>mn) - z * y^(mn+1) * SUM(d)) =
|
||||
// = rwf * r' y s' - rwf * e^2 * (z - z ^ 2)*SUM(y^>mn) + rwf * e^2 * z * y^(mn+1) * SUM(d)
|
||||
G_scalar += rwf * sig.r * interm.y * sig.s + rwf_e_sq_y * sum_d * interm.z;
|
||||
G_scalar -= rwf * interm.e_final_sq * (interm.z - interm.z_sq) * sum_of_powers(interm.y, log2_mn);
|
||||
DBG_PRINT("sum_y: " << sum_of_powers(interm.y, log2_mn));
|
||||
DBG_PRINT("G_scalar: " << G_scalar);
|
||||
|
||||
// H point multiplicands:
|
||||
// rwf * delta
|
||||
H_scalar += rwf * sig.delta;
|
||||
DBG_PRINT("H_scalar: " << H_scalar);
|
||||
|
||||
// uncommon generators' multiplicands
|
||||
point_t summand_8 = c_point_0; // this summand to be multiplied by 8 before adding to the main summand
|
||||
// - rwf * e^2 * A0
|
||||
summand_8 -= rwf * interm.e_final_sq * interm.A0;
|
||||
DBG_PRINT("A0_scalar: " << c_scalar_Lm1 * interm.e_final_sq * rwf);
|
||||
|
||||
// - rwf * e^2 * y^(mn+1) * (SUM{j=1..m} (z^2)^j * V_j))
|
||||
scalar_t e_sq_y_mn1_z_sq_power = rwf * interm.e_final_sq * y_power_mnp1;
|
||||
for (size_t j = 0; j < bsc.commitments.size(); ++j)
|
||||
{
|
||||
e_sq_y_mn1_z_sq_power *= interm.z_sq;
|
||||
summand_8 -= e_sq_y_mn1_z_sq_power * bsc.commitments[j];
|
||||
DBG_PRINT("V_scalar[" << j << "]: " << c_scalar_Lm1 * e_sq_y_mn1_z_sq_power);
|
||||
}
|
||||
|
||||
// - rwf * e^2 * SUM{j=1..log(n)}(e_j^2 * L_j + e_j^-2 * R_j)
|
||||
scalar_t rwf_e_sq = rwf * interm.e_final_sq;
|
||||
for (size_t j = 0; j < log2_mn; ++j)
|
||||
{
|
||||
summand_8 -= rwf_e_sq * (interm.e_sq[j] * interm.L[j] + get_e_inv(j) * get_e_inv(j) * interm.R[j]);
|
||||
DBG_PRINT("L_scalar[" << j << "]: " << c_scalar_Lm1 * rwf_e_sq * interm.e_sq[j]);
|
||||
DBG_PRINT("R_scalar[" << j << "]: " << c_scalar_Lm1 * rwf_e_sq * get_e_inv(j) * get_e_inv(j));
|
||||
}
|
||||
|
||||
// - rwf * e * A - rwf * B = 0
|
||||
summand_8 -= rwf * interm.e_final * interm.A + rwf * interm.B;
|
||||
DBG_PRINT("A_scalar: " << c_scalar_Lm1 * rwf * interm.e_final);
|
||||
DBG_PRINT("B_scalar: " << c_scalar_Lm1 * rwf);
|
||||
|
||||
summand_8.modify_mul8();
|
||||
summand += summand_8;
|
||||
}
|
||||
|
||||
point_t GH_exponents = c_point_0;
|
||||
CT::calc_pedersen_commitment(G_scalar, H_scalar, GH_exponents);
|
||||
bool result = multiexp_and_check_being_zero<CT>(g_scalars, h_scalars, summand + GH_exponents);
|
||||
if (result)
|
||||
DBG_PRINT(ENDL << " . . . . bpp_verify() -- SUCCEEDED!!!" << ENDL);
|
||||
return result;
|
||||
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
|
||||
}
|
||||
|
||||
} // namespace crypto
|
||||
|
|
@ -6,7 +6,4 @@
|
|||
|
||||
namespace crypto
|
||||
{
|
||||
const point_t& bpp_crypto_trait_zano::bpp_H = c_point_H;
|
||||
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,14 +1,9 @@
|
|||
// Copyright (c) 2021 Zano Project (https://zano.org/)
|
||||
// Copyright (c) 2021 sowle (val@zano.org, crypto.sowle@gmail.com)
|
||||
// Copyright (c) 2021-2022 Zano Project (https://zano.org/)
|
||||
// Copyright (c) 2021-2022 sowle (val@zano.org, crypto.sowle@gmail.com)
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
#pragma once
|
||||
|
||||
//
|
||||
// This file contains the implementation of range proof protocol.
|
||||
// Namely, Bulletproofs+ https://eprint.iacr.org/2020/735.pdf
|
||||
//
|
||||
|
||||
#include "epee/include/misc_log_ex.h"
|
||||
#include "crypto-sugar.h"
|
||||
|
||||
|
|
@ -28,27 +23,23 @@ namespace crypto
|
|||
return result;
|
||||
}
|
||||
|
||||
constexpr size_t c_bpp_log2_n = 6;
|
||||
constexpr size_t c_bpp_n = 64; // 2^64 is the upper bound for the witness's range
|
||||
constexpr size_t c_bpp_values_max = 16; // maximum number of elements in BP+ proof, i.e. max allowed BP+ outputs
|
||||
constexpr size_t c_bpp_mn_max = c_bpp_n * c_bpp_values_max;
|
||||
|
||||
// returns greatest k, s.t. 2**k <= v
|
||||
// tests in crypto_tests_range_proofs.h
|
||||
constexpr size_t constexpr_floor_log2(size_t v)
|
||||
{
|
||||
return v <= 1 ? 0 : constexpr_floor_log2(v >> 1) + 1;
|
||||
}
|
||||
|
||||
// returns smallest k, s.t. v <= 2**k
|
||||
inline size_t calc_exp_power_of_2_upper_bound(size_t v)
|
||||
// tests in crypto_tests_range_proofs.h
|
||||
constexpr size_t constexpr_ceil_log2(size_t v)
|
||||
{
|
||||
constexpr size_t max_v = (SIZE_MAX >> 1) + 1;
|
||||
//if (v > max_v)
|
||||
// return 0;
|
||||
|
||||
size_t pow = 1, result = 0;
|
||||
while (v > pow)
|
||||
{
|
||||
pow <<= 1;
|
||||
++result;
|
||||
}
|
||||
return result;
|
||||
return v <= 1 ? 0 : constexpr_floor_log2(v - 1) + 1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// returns least significant bit uing de Bruijn sequence
|
||||
// http://graphics.stanford.edu/~seander/bithacks.html
|
||||
inline uint8_t calc_lsb_32(uint32_t v)
|
||||
|
|
@ -61,17 +52,28 @@ namespace crypto
|
|||
return multiply_de_bruijn_bit_position[((uint32_t)((v & -(int32_t)v) * 0x077CB531U)) >> 27];
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////
|
||||
// crypto trait for Zano
|
||||
////////////////////////////////////////
|
||||
template<size_t N = 64, size_t values_max = 16>
|
||||
struct bpp_crypto_trait_zano
|
||||
{
|
||||
static constexpr size_t c_bpp_n = N; // the upper bound for the witness's range
|
||||
static constexpr size_t c_bpp_values_max = values_max; // maximum number of elements in BP+ proof, i.e. max allowed BP+ outputs
|
||||
static constexpr size_t c_bpp_log2_n = constexpr_ceil_log2(c_bpp_n);
|
||||
static constexpr size_t c_bpp_mn_max = c_bpp_n * c_bpp_values_max;
|
||||
|
||||
static void calc_pedersen_commitment(const scalar_t& value, const scalar_t& mask, point_t& commitment)
|
||||
{
|
||||
commitment = value * c_point_G + mask * c_point_H;
|
||||
}
|
||||
|
||||
static void calc_pedersen_commitment_2(const scalar_t& value, const scalar_t& mask1, const scalar_t& mask2, point_t& commitment)
|
||||
{
|
||||
commitment = value * c_point_G + mask1 * c_point_H + mask2 * c_point_H2;
|
||||
}
|
||||
|
||||
static const scalar_t& get_initial_transcript()
|
||||
{
|
||||
static scalar_t value = hash_helper_t::hs("Zano BP+ initial transcript");
|
||||
|
|
@ -86,6 +88,7 @@ namespace crypto
|
|||
e = hsc.calc_hash();
|
||||
}
|
||||
|
||||
// TODO: refactor with proper OOB handling
|
||||
static const point_t& get_generator(bool select_H, size_t index)
|
||||
{
|
||||
if (index >= c_bpp_mn_max)
|
||||
|
|
@ -108,332 +111,22 @@ namespace crypto
|
|||
}
|
||||
|
||||
static const point_t& bpp_H;
|
||||
};
|
||||
static const point_t& bpp_H2;
|
||||
}; // struct bpp_crypto_trait_zano
|
||||
|
||||
template<size_t N, size_t values_max>
|
||||
const point_t& bpp_crypto_trait_zano<N, values_max>::bpp_H = c_point_H;
|
||||
|
||||
template<size_t N, size_t values_max>
|
||||
const point_t& bpp_crypto_trait_zano<N, values_max>::bpp_H2 = c_point_H2;
|
||||
|
||||
|
||||
struct bpp_signature
|
||||
{
|
||||
std::vector<public_key> L; // size = log_2(m * n)
|
||||
std::vector<public_key> R;
|
||||
public_key A0;
|
||||
public_key A;
|
||||
public_key B;
|
||||
scalar_t r;
|
||||
scalar_t s;
|
||||
scalar_t delta;
|
||||
};
|
||||
|
||||
#define DBG_VAL_PRINT(x) std::cout << #x ": " << x << ENDL
|
||||
#define DBG_PRINT(x) std::cout << x << ENDL
|
||||
|
||||
template<typename CT>
|
||||
bool bpp_gen(const std::vector<uint64_t>& values, const scalar_vec_t& masks, bpp_signature& sig, std::vector<point_t>& commitments, uint8_t* p_err = nullptr)
|
||||
{
|
||||
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
|
||||
if (!(cond)) { LOG_PRINT_RED("bpp_gen: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
|
||||
if (p_err) { *p_err = err_code; } return false; }
|
||||
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(values.size() > 0 && values.size() <= c_bpp_values_max && values.size() == masks.size(), 1);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(masks.is_reduced(), 3);
|
||||
|
||||
const size_t c_bpp_log2_m = calc_exp_power_of_2_upper_bound(values.size());
|
||||
const size_t c_bpp_m = 1ull << c_bpp_log2_m;
|
||||
const size_t c_bpp_mn = c_bpp_m * c_bpp_n;
|
||||
const size_t c_bpp_log2_mn = c_bpp_log2_m + c_bpp_log2_n;
|
||||
|
||||
// pre-multiply all output points by c_scalar_1div8
|
||||
// in order to enforce these points to be in the prime-order subgroup (after mul by 8 in bpp_verify())
|
||||
|
||||
// calc commitments vector as commitments[i] = 1/8 * values[i] * G + 1/8 * masks[i] * H
|
||||
commitments.resize(values.size());
|
||||
for (size_t i = 0; i < values.size(); ++i)
|
||||
CT::calc_pedersen_commitment(scalar_t(values[i]) * c_scalar_1div8, masks[i] * c_scalar_1div8, commitments[i]);
|
||||
|
||||
|
||||
// s.a. BP+ paper, page 15, eq. 11
|
||||
// decompose v into aL and aR:
|
||||
// v = aL o (1, 2, 2^2, ..., 2^n-1), o - component-wise product aka Hadamard product
|
||||
// aR = aL - (1, 1, ... 1)
|
||||
// aR o aL = 0
|
||||
|
||||
// aLs = (aL_0, aL_1, ..., aL_m-1) -- `bit` matrix of c_bpp_m x c_bpp_n, each element is a scalar
|
||||
|
||||
scalar_mat_t<c_bpp_n> aLs(c_bpp_mn), aRs(c_bpp_mn);
|
||||
aLs.zero();
|
||||
aRs.zero();
|
||||
// m >= values.size, first set up [0..values.size-1], then -- [values.size..m-1] (padding area)
|
||||
for (size_t i = 0; i < values.size(); ++i)
|
||||
{
|
||||
uint64_t v = values[i];
|
||||
for (size_t j = 0; j < c_bpp_n; ++j)
|
||||
{
|
||||
if (v & 1)
|
||||
aLs(i, j) = c_scalar_1; // aL = 1, aR = 0
|
||||
else
|
||||
aRs(i, j) = c_scalar_Lm1; // aL = 0, aR = -1
|
||||
v >>= 1;
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t i = values.size(); i < c_bpp_m; ++i)
|
||||
for (size_t j = 0; j < c_bpp_n; ++j)
|
||||
aRs(i, j) = c_scalar_Lm1; // aL = 0, aR = -1
|
||||
|
||||
|
||||
// using e as Fiat-Shamir transcript
|
||||
scalar_t e = CT::get_initial_transcript();
|
||||
DBG_PRINT("initial transcript: " << e);
|
||||
|
||||
hash_helper_t::hs_t hsc;
|
||||
CT::update_transcript(hsc, e, commitments);
|
||||
|
||||
// BP+ paper, page 15: The prover begins with sending A = g^aL h^aR h^alpha (group element)
|
||||
// so we calculate A0 = alpha * H + SUM(aL_i * G_i) + SUM(aR_i * H_i)
|
||||
|
||||
scalar_t alpha = scalar_t::random();
|
||||
point_t A0 = alpha * CT::bpp_H;
|
||||
|
||||
for (size_t i = 0; i < c_bpp_mn; ++i)
|
||||
A0 += aLs[i] * CT::get_generator(false, i) + aRs[i] * CT::get_generator(true, i);
|
||||
|
||||
// part of 1/8 defense scheme
|
||||
A0 *= c_scalar_1div8;
|
||||
A0.to_public_key(sig.A0);
|
||||
|
||||
DBG_VAL_PRINT(alpha);
|
||||
DBG_VAL_PRINT(A0);
|
||||
|
||||
// calculate scalar challenges y and z
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.A0);
|
||||
scalar_t y = hsc.calc_hash();
|
||||
scalar_t z = hash_helper_t::hs(y);
|
||||
e = z; // transcript for further steps
|
||||
DBG_VAL_PRINT(y);
|
||||
DBG_VAL_PRINT(z);
|
||||
|
||||
// Computing vector d for aggregated version of the protocol (BP+ paper, page 17)
|
||||
// (note: elements is stored column-by-column in memory)
|
||||
// d = | 1 * z^(2*1), 1 * z^(2*2), 1 * z^(2*3), ..., 1 * z^(2*m) |
|
||||
// | 2 * z^(2*1), 2 * z^(2*2), 2 * z^(2*3), ..., 2 * z^(2*m) |
|
||||
// | 4 * z^(2*1), 4 * z^(2*2), 4 * z^(2*3), ..., 4 * z^(2*m) |
|
||||
// | ....................................................................................... |
|
||||
// | 2^(n-1) * z^(2*1), 2^(n-1) * z^(2*2), 2^(n-1) * z^(2*3), ..., 2^(n-1) * z^(2*m)) |
|
||||
// Note: sum(d_i) = (2^n - 1) * ((z^2)^1 + (z^2)^2 + ... (z^2)^m)) = (2^n-1) * sum_of_powers(x^2, log(m))
|
||||
|
||||
scalar_t z_sq = z * z;
|
||||
scalar_mat_t<c_bpp_n> d(c_bpp_mn);
|
||||
d(0, 0) = z_sq;
|
||||
// first row
|
||||
for (size_t i = 1; i < c_bpp_m; ++i)
|
||||
d(i, 0) = d(i - 1, 0) * z_sq;
|
||||
// all rows
|
||||
for (size_t j = 1; j < c_bpp_n; ++j)
|
||||
for (size_t i = 0; i < c_bpp_m; ++i)
|
||||
d(i, j) = d(i, j - 1) + d(i, j - 1);
|
||||
|
||||
DBG_PRINT("Hs(d): " << d.calc_hs());
|
||||
|
||||
// calculate extended Vandermonde vector y = (1, y, y^2, ..., y^(mn+1)) (BP+ paper, page 18, Fig. 3)
|
||||
// (calculate two more elements (1 and y^(mn+1)) for convenience)
|
||||
scalar_vec_t y_powers(c_bpp_mn + 2);
|
||||
y_powers[0] = 1;
|
||||
for (size_t i = 1; i <= c_bpp_mn + 1; ++i)
|
||||
y_powers[i] = y_powers[i - 1] * y;
|
||||
|
||||
const scalar_t& y_mn_p1 = y_powers[c_bpp_mn + 1];
|
||||
|
||||
DBG_PRINT("Hs(y_powers): " << y_powers.calc_hs());
|
||||
|
||||
// aL_hat = aL - 1*z
|
||||
scalar_vec_t aLs_hat = aLs - z;
|
||||
// aL_hat = aR + d o y^leftarr + 1*z where y^leftarr = (y^n, y^(n-1), ..., y) (BP+ paper, page 18, Fig. 3)
|
||||
scalar_vec_t aRs_hat = aRs + z;
|
||||
for (size_t i = 0; i < c_bpp_mn; ++i)
|
||||
aRs_hat[i] += d[i] * y_powers[c_bpp_mn - i];
|
||||
|
||||
DBG_PRINT("Hs(aLs_hat): " << aLs_hat.calc_hs());
|
||||
DBG_PRINT("Hs(aRs_hat): " << aRs_hat.calc_hs());
|
||||
|
||||
// calculate alpha_hat
|
||||
// alpha_hat = alpha + SUM(z^(2j) * gamma_j * y^(mn+1)) for j = 1..m
|
||||
// i.e. \hat{\alpha} = \alpha + y^{m n+1} \sum_{j = 1}^{m} z^{2j} \gamma_j
|
||||
scalar_t alpha_hat = 0;
|
||||
for (size_t i = 0; i < masks.size(); ++i)
|
||||
alpha_hat += d(i, 0) * masks[i];
|
||||
alpha_hat = alpha + y_mn_p1 * alpha_hat;
|
||||
|
||||
DBG_VAL_PRINT(alpha_hat);
|
||||
|
||||
// calculate y^-1, y^-2, ...
|
||||
const scalar_t y_inverse = y.reciprocal();
|
||||
scalar_vec_t y_inverse_powers(c_bpp_mn / 2 + 1); // the greatest power we need is c_bpp_mn/2 (at the first reduction round)
|
||||
y_inverse_powers[0] = 1;
|
||||
for (size_t i = 1, size = y_inverse_powers.size(); i < size; ++i)
|
||||
y_inverse_powers[i] = y_inverse_powers[i - 1] * y_inverse;
|
||||
|
||||
// prepare generator's vector
|
||||
std::vector<point_t> g(c_bpp_mn), h(c_bpp_mn);
|
||||
for (size_t i = 0; i < c_bpp_mn; ++i)
|
||||
{
|
||||
g[i] = CT::get_generator(false, i);
|
||||
h[i] = CT::get_generator(true, i);
|
||||
}
|
||||
|
||||
// WIP zk-argument called with zk-WIP(g, h, G, H, A_hat, aL_hat, aR_hat, alpha_hat)
|
||||
|
||||
scalar_vec_t& a = aLs_hat;
|
||||
scalar_vec_t& b = aRs_hat;
|
||||
|
||||
sig.L.resize(c_bpp_log2_mn);
|
||||
sig.R.resize(c_bpp_log2_mn);
|
||||
|
||||
// zk-WIP reduction rounds (s.a. the preprint page 13 Fig. 1)
|
||||
for (size_t n = c_bpp_mn / 2, ni = 0; n >= 1; n /= 2, ++ni)
|
||||
{
|
||||
DBG_PRINT(ENDL << "#" << ni);
|
||||
|
||||
// zk-WIP(g, h, G, H, P, a, b, alpha)
|
||||
|
||||
scalar_t dL = scalar_t::random();
|
||||
DBG_VAL_PRINT(dL);
|
||||
scalar_t dR = scalar_t::random();
|
||||
DBG_VAL_PRINT(dR);
|
||||
|
||||
// a = (a1, a2), b = (b1, b2) -- vectors of scalars
|
||||
// cL = <a1, ((y, y^2, ...) o b2)> -- scalar
|
||||
scalar_t cL = 0;
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
cL += a[i] * y_powers[i + 1] * b[n + i];
|
||||
|
||||
DBG_VAL_PRINT(cL);
|
||||
|
||||
// cR = <a2, ((y, y^2, ...) o b1)> * y^n -- scalar
|
||||
scalar_t cR = 0;
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
cR += a[n + i] * y_powers[i + 1] * b[i];
|
||||
cR *= y_powers[n];
|
||||
|
||||
DBG_VAL_PRINT(cR);
|
||||
|
||||
// L = y^-n * a1 * g2 + b2 * h1 + cL * G + dL * H -- point
|
||||
point_t sum = c_point_0;
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
sum += a[i] * g[n + i];
|
||||
point_t L;
|
||||
CT::calc_pedersen_commitment(cL, dL, L);
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
L += b[n + i] * h[i];
|
||||
L += y_inverse_powers[n] * sum;
|
||||
L *= c_scalar_1div8;
|
||||
DBG_VAL_PRINT(L);
|
||||
|
||||
// R = y^n * a2 * g1 + b1 * h2 + cR * G + dR * H -- point
|
||||
sum.zero();
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
sum += a[n + i] * g[i];
|
||||
point_t R;
|
||||
CT::calc_pedersen_commitment(cR, dR, R);
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
R += b[i] * h[n + i];
|
||||
R += y_powers[n] * sum;
|
||||
R *= c_scalar_1div8;
|
||||
DBG_VAL_PRINT(R);
|
||||
|
||||
// put L, R to the sig
|
||||
L.to_public_key(sig.L[ni]);
|
||||
R.to_public_key(sig.R[ni]);
|
||||
|
||||
// update the transcript
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.L[ni]);
|
||||
hsc.add_pub_key(sig.R[ni]);
|
||||
e = hsc.calc_hash();
|
||||
DBG_VAL_PRINT(e);
|
||||
|
||||
// recalculate arguments for the next round
|
||||
scalar_t e_squared = e * e;
|
||||
scalar_t e_inverse = e.reciprocal();
|
||||
scalar_t e_inverse_squared = e_inverse * e_inverse;
|
||||
scalar_t e_y_inv_n = e * y_inverse_powers[n];
|
||||
scalar_t e_inv_y_n = e_inverse * y_powers[n];
|
||||
|
||||
// g_hat = e^-1 * g1 + (e * y^-n) * g2 -- vector of points
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
g[i] = e_inverse * g[i] + e_y_inv_n * g[n + i];
|
||||
|
||||
// h_hat = e * h1 + e^-1 * h2 -- vector of points
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
h[i] = e * h[i] + e_inverse * h[n + i];
|
||||
|
||||
// P_hat = e^2 * L + P + e^-2 * R -- point
|
||||
|
||||
// a_hat = e * a1 + e^-1 * y^n * a2 -- vector of scalars
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
a[i] = e * a[i] + e_inv_y_n * a[n + i];
|
||||
|
||||
// b_hat = e^-1 * b1 + e * b2 -- vector of scalars
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
b[i] = e_inverse * b[i] + e * b[n + i];
|
||||
|
||||
// alpha_hat = e^2 * dL + alpha + e^-2 * dR -- scalar
|
||||
alpha_hat += e_squared * dL + e_inverse_squared * dR;
|
||||
|
||||
// run next iteraton zk-WIP(g_hat, h_hat, G, H, P_hat, a_hat, b_hat, alpha_hat)
|
||||
}
|
||||
DBG_PRINT("");
|
||||
|
||||
// zk-WIP last round
|
||||
scalar_t r = scalar_t::random();
|
||||
scalar_t s = scalar_t::random();
|
||||
scalar_t delta = scalar_t::random();
|
||||
scalar_t eta = scalar_t::random();
|
||||
DBG_VAL_PRINT(r);
|
||||
DBG_VAL_PRINT(s);
|
||||
DBG_VAL_PRINT(delta);
|
||||
DBG_VAL_PRINT(eta);
|
||||
|
||||
// A = r * g + s * h + (r y b + s y a) * G + delta * H -- point
|
||||
point_t A = c_point_0;
|
||||
CT::calc_pedersen_commitment(y * (r * b[0] + s * a[0]), delta, A);
|
||||
A += r * g[0] + s * h[0];
|
||||
A *= c_scalar_1div8;
|
||||
A.to_public_key(sig.A);
|
||||
DBG_VAL_PRINT(A);
|
||||
|
||||
// B = (r * y * s) * G + eta * H
|
||||
point_t B = c_point_0;
|
||||
CT::calc_pedersen_commitment(r * y * s, eta, B);
|
||||
B *= c_scalar_1div8;
|
||||
B.to_public_key(sig.B);
|
||||
DBG_VAL_PRINT(B);
|
||||
|
||||
// update the transcript
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.A);
|
||||
hsc.add_pub_key(sig.B);
|
||||
e = hsc.calc_hash();
|
||||
DBG_VAL_PRINT(e);
|
||||
|
||||
// finalize the signature
|
||||
sig.r = r + e * a[0];
|
||||
sig.s = s + e * b[0];
|
||||
sig.delta = eta + e * delta + e * e * alpha_hat;
|
||||
DBG_VAL_PRINT(sig.r);
|
||||
DBG_VAL_PRINT(sig.s);
|
||||
DBG_VAL_PRINT(sig.delta);
|
||||
|
||||
return true;
|
||||
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
|
||||
} // bpp_gen()
|
||||
|
||||
|
||||
// efficient multiexponentiation (naive stub implementation atm, TODO)
|
||||
template<typename CT>
|
||||
bool multiexp_and_check_being_zero(const scalar_vec_t& g_scalars, const scalar_vec_t& h_scalars, const point_t& summand)
|
||||
{
|
||||
CHECK_AND_ASSERT_MES(g_scalars.size() < c_bpp_mn_max, false, "g_scalars oversized");
|
||||
CHECK_AND_ASSERT_MES(h_scalars.size() < c_bpp_mn_max, false, "h_scalars oversized");
|
||||
CHECK_AND_ASSERT_MES(g_scalars.size() < CT::c_bpp_mn_max, false, "g_scalars oversized");
|
||||
CHECK_AND_ASSERT_MES(h_scalars.size() < CT::c_bpp_mn_max, false, "h_scalars oversized");
|
||||
|
||||
point_t result = summand;
|
||||
|
||||
|
|
@ -452,372 +145,6 @@ namespace crypto
|
|||
}
|
||||
|
||||
|
||||
struct bpp_sig_commit_ref_t
|
||||
{
|
||||
bpp_sig_commit_ref_t(const bpp_signature& sig, const std::vector<point_t>& commitments)
|
||||
: sig(sig)
|
||||
, commitments(commitments)
|
||||
{}
|
||||
const bpp_signature& sig;
|
||||
const std::vector<point_t>& commitments;
|
||||
};
|
||||
|
||||
|
||||
template<typename CT>
|
||||
bool bpp_verify(const std::vector<bpp_sig_commit_ref_t>& sigs, uint8_t* p_err = nullptr)
|
||||
{
|
||||
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
|
||||
if (!(cond)) { LOG_PRINT_RED("bpp_verify: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
|
||||
if (p_err) { *p_err = err_code; } return false; }
|
||||
|
||||
DBG_PRINT(ENDL << " . . . . bpp_verify() . . . . ");
|
||||
|
||||
const size_t kn = sigs.size();
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(kn > 0, 1);
|
||||
|
||||
struct intermediate_element_t
|
||||
{
|
||||
scalar_t y;
|
||||
scalar_t z;
|
||||
scalar_t z_sq;
|
||||
scalar_vec_t e;
|
||||
scalar_vec_t e_sq;
|
||||
scalar_t e_final;
|
||||
scalar_t e_final_sq;
|
||||
size_t inv_e_offset; // offset in batch_for_inverse
|
||||
size_t inv_y_offset; // offset in batch_for_inverse
|
||||
size_t c_bpp_log2_m;
|
||||
size_t c_bpp_m;
|
||||
size_t c_bpp_mn;
|
||||
point_t A;
|
||||
point_t A0;
|
||||
point_t B;
|
||||
std::vector<point_t> L;
|
||||
std::vector<point_t> R;
|
||||
};
|
||||
std::vector<intermediate_element_t> interms(kn);
|
||||
|
||||
size_t c_bpp_log2_m_max = 0;
|
||||
for (size_t k = 0; k < kn; ++k)
|
||||
{
|
||||
const bpp_sig_commit_ref_t& bsc = sigs[k];
|
||||
const bpp_signature& sig = bsc.sig;
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(bsc.commitments.size() > 0, 2);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sig.L.size() > 0 && sig.L.size() == sig.R.size(), 3);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sig.r.is_reduced() && sig.s.is_reduced() && sig.delta.is_reduced(), 4);
|
||||
|
||||
intermediate_element_t& interm = interms[k];
|
||||
interm.c_bpp_log2_m = calc_exp_power_of_2_upper_bound(bsc.commitments.size());
|
||||
if (c_bpp_log2_m_max < interm.c_bpp_log2_m)
|
||||
c_bpp_log2_m_max = interm.c_bpp_log2_m;
|
||||
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sig.L.size() == interm.c_bpp_log2_m + c_bpp_log2_n, 5);
|
||||
|
||||
interm.c_bpp_m = 1ull << interm.c_bpp_log2_m;
|
||||
interm.c_bpp_mn = interm.c_bpp_m * c_bpp_n;
|
||||
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.A0.from_public_key(sig.A0), 6);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.A.from_public_key(sig.A), 7);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.B.from_public_key(sig.B), 8);
|
||||
interm.L.resize(sig.L.size());
|
||||
interm.R.resize(sig.R.size());
|
||||
for (size_t i = 0; i < interm.L.size(); ++i)
|
||||
{
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.L[i].from_public_key(sig.L[i]), 9);
|
||||
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.R[i].from_public_key(sig.R[i]), 10);
|
||||
}
|
||||
}
|
||||
const size_t c_bpp_m_max = 1ull << c_bpp_log2_m_max;
|
||||
const size_t c_bpp_mn_max = c_bpp_m_max * c_bpp_n;
|
||||
const size_t c_bpp_LR_size_max = c_bpp_log2_m_max + c_bpp_log2_n;
|
||||
|
||||
|
||||
//
|
||||
// prepare stuff
|
||||
//
|
||||
/*
|
||||
std::vector<point_t> g(c_bpp_mn_max), h(c_bpp_mn_max);
|
||||
for (size_t i = 0; i < c_bpp_mn_max; ++i)
|
||||
{
|
||||
g[i] = CT::get_generator(false, i);
|
||||
h[i] = CT::get_generator(true, i);
|
||||
}
|
||||
*/
|
||||
|
||||
scalar_vec_t batch_for_inverse;
|
||||
batch_for_inverse.reserve(kn + kn * c_bpp_LR_size_max);
|
||||
|
||||
|
||||
for (size_t k = 0; k < kn; ++k)
|
||||
{
|
||||
DBG_PRINT(ENDL << "SIG #" << k);
|
||||
const bpp_sig_commit_ref_t& bsc = sigs[k];
|
||||
const bpp_signature& sig = bsc.sig;
|
||||
intermediate_element_t& interm = interms[k];
|
||||
|
||||
// restore y and z
|
||||
// using e as Fiat-Shamir transcript
|
||||
scalar_t e = CT::get_initial_transcript();
|
||||
DBG_PRINT("initial transcript: " << e);
|
||||
hash_helper_t::hs_t hsc;
|
||||
CT::update_transcript(hsc, e, bsc.commitments);
|
||||
// calculate scalar challenges y and z
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.A0);
|
||||
hsc.assign_calc_hash(interm.y);
|
||||
interm.z = hash_helper_t::hs(interm.y);
|
||||
interm.z_sq = interm.z * interm.z;
|
||||
DBG_VAL_PRINT(interm.y);
|
||||
DBG_VAL_PRINT(interm.z);
|
||||
e = interm.z; // transcript for further steps
|
||||
|
||||
interm.inv_y_offset = batch_for_inverse.size();
|
||||
batch_for_inverse.push_back(interm.y);
|
||||
interm.inv_e_offset = batch_for_inverse.size();
|
||||
|
||||
interm.e.resize(sig.L.size());
|
||||
interm.e_sq.resize(sig.L.size());
|
||||
|
||||
for (size_t i = 0; i < sig.L.size(); ++i)
|
||||
{
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.L[i]);
|
||||
hsc.add_pub_key(sig.R[i]);
|
||||
hsc.assign_calc_hash(e);
|
||||
interm.e[i] = e;
|
||||
interm.e_sq[i] = e * e;
|
||||
DBG_PRINT("e[" << i << "]: " << e);
|
||||
batch_for_inverse.push_back(e);
|
||||
}
|
||||
|
||||
hsc.add_scalar(e);
|
||||
hsc.add_pub_key(sig.A);
|
||||
hsc.add_pub_key(sig.B);
|
||||
hsc.assign_calc_hash(interm.e_final);
|
||||
interm.e_final_sq = interm.e_final * interm.e_final;
|
||||
DBG_VAL_PRINT(interm.e_final);
|
||||
}
|
||||
|
||||
batch_for_inverse.invert();
|
||||
|
||||
// Notation:
|
||||
// 1_vec ^ n = (1, 1, 1, ..., 1)
|
||||
// 2_vec ^ n = (2^0, 2^1, 2^2, ..., 2^(n-1))
|
||||
// -1_vec ^ n = ((-1)^0, (-1)^1, (-1)^2, ... (-1)^(n-1)) = (1, -1, 1, -1, ...)
|
||||
// y<^n = (y^n, y^(n-1), ..., y^1)
|
||||
// y>^n = (y^1, y^2, ..., y^n)
|
||||
|
||||
// from page 13, Fig 1:
|
||||
// Verifier outputs Accept IFF the following equality holds (single proof):
|
||||
// P^e^2 * A^e * B == g ^ (r' e) * h ^ (s' e) * G ^ (r' y s') * H ^ delta'
|
||||
// (where g and h are calculated in each round)
|
||||
// The same equation in additive notation:
|
||||
// e^2 * P + e * A + B == (r' * e) * g + (s' * e) * h + (r' y s') * G + delta' * H
|
||||
// <=>
|
||||
// (r' * e) * g + (s' * e) * h + (r' y s') * G + delta' * H - e^2 * P - e * A - B == 0 (*)
|
||||
// where A, B, r', s', delta' is taken from the signature
|
||||
// and P_{k+1} = e^2 * L_k + P_k + e^-2 * R_k for all rounds
|
||||
//
|
||||
// from page 18, Fig 3:
|
||||
// P and V computes:
|
||||
// A_hat = A0 + (- 1^(mn) * z) * g + (d o y<^(mn) + 1^(mn) * z) * h +
|
||||
// + y^(mn+1) * (SUM{j=1..m} z^(2j) * V_j) +
|
||||
// + (z*SUM(y^>mn) - z*y^(mn+1)*SUM(d) - z^2 * SUM(y^>mn)) * G
|
||||
// (calculated once)
|
||||
//
|
||||
// As suggested in Section 6.1 "Practical Optimizations":
|
||||
// 1) g and h exponentianions can be optimized in order not to be calculated at each round as the following (page 20):
|
||||
//
|
||||
// (r' * e * s_vec) * g + (s' * e * s'_vec) * h + (r' y s') * G + delta' * H -
|
||||
// - e^2 * A_hat
|
||||
// - SUM{j=1..log(n)}(e_final^2 * e_j^2 * L_j + e_final^2 * e_j^-2 * R_j)
|
||||
// - e * A - B = 0 (**)
|
||||
//
|
||||
// where:
|
||||
// g, h - vector of fixed generators
|
||||
// s_vec_i = y^(1-i) * PROD{j=1..log(n)}(e_j ^ b(i,j))
|
||||
// s'_vec_i = PROD{j=1..log(n)}(e_j ^ -b(i,j))
|
||||
// b(i, j) = { 2 * ((1<<(j-1)) & (i-1)) - 1) (counting both from 1) (page 20)
|
||||
// b(i, j) = { 2 * ((1<<j) & i) - 1) (counting both from 0)
|
||||
//
|
||||
// 2) we gonna aggregate all (**) for each round by multiplying them to a random weights and then sum up
|
||||
// insert A_hat into (**) =>
|
||||
|
||||
// (r' * e * s_vec) * g + (s' * e * s'_vec) * h + (r' y s') * G + delta' * H -
|
||||
// - e^2 * (A0 + (- 1^(mn) * z) * g + (d o y<^(mn) + 1^(mn) * z) * h +
|
||||
// + y^(mn+1) * (SUM{j=1..m} z^(2j) * V_j) +
|
||||
// + (z*SUM(y^>mn) - z*y^(mn+1)*SUM(d) - z^2 * SUM(y^>mn)) * G
|
||||
// )
|
||||
// - SUM{j=1..log(n)}(e_final^2 * e_j^2 * L_j + e_final^2 * e_j^-2 * R_j)
|
||||
// - e * A - B = 0
|
||||
|
||||
// =>
|
||||
|
||||
// (for single signature)
|
||||
//
|
||||
// (r' * e * s_vec - e^2 * (- 1_vec^(mn) * z)) * g | these are
|
||||
// + (s' * e * s'_vec - e^2 * (d o y<^(mn) + 1_vec^(mn) * z)) * h | fixed generators
|
||||
// + (r' y s' - e^2 * ((z - z^2)*SUM(y^>mn) - z*y^(mn+1)*SUM(d)) * G | across all
|
||||
// + delta' * H | the signatures
|
||||
//
|
||||
// - e^2 * A0
|
||||
// - e^2 * y^(mn+1) * (SUM{j=1..m} z^(2j) * V_j))
|
||||
// - e^2 * SUM{j=1..log(n)}(e_j^2 * L_j + e_j^-2 * R_j)
|
||||
// - e * A - B = 0 (***)
|
||||
//
|
||||
// All (***) will be muptiplied by random weightning factor and then summed up.
|
||||
|
||||
// Calculate cummulative sclalar multiplicand for fixed generators across all the sigs.
|
||||
scalar_vec_t g_scalars;
|
||||
g_scalars.resize(c_bpp_mn_max, 0);
|
||||
scalar_vec_t h_scalars;
|
||||
h_scalars.resize(c_bpp_mn_max, 0);
|
||||
scalar_t G_scalar = 0;
|
||||
scalar_t H_scalar = 0;
|
||||
point_t summand = c_point_0;
|
||||
|
||||
for (size_t k = 0; k < kn; ++k)
|
||||
{
|
||||
DBG_PRINT(ENDL << "SIG #" << k);
|
||||
const bpp_sig_commit_ref_t& bsc = sigs[k];
|
||||
const bpp_signature& sig = bsc.sig;
|
||||
intermediate_element_t& interm = interms[k];
|
||||
|
||||
// random weightning factor for speed-optimized batch verification (preprint page 20)
|
||||
const scalar_t rwf = scalar_t::random();
|
||||
DBG_PRINT("rwf: " << rwf);
|
||||
|
||||
// prepare d vector (see also d structure description in proof function)
|
||||
scalar_mat_t<c_bpp_n> d(interm.c_bpp_mn);
|
||||
d(0, 0) = interm.z_sq;
|
||||
// first row
|
||||
for (size_t i = 1; i < interm.c_bpp_m; ++i)
|
||||
d(i, 0) = d(i - 1, 0) * interm.z_sq;
|
||||
// all rows
|
||||
for (size_t j = 1; j < c_bpp_n; ++j)
|
||||
for (size_t i = 0; i < interm.c_bpp_m; ++i)
|
||||
d(i, j) = d(i, j - 1) + d(i, j - 1);
|
||||
// sum(d) (see also note in proof function for this)
|
||||
static const scalar_t c_scalar_2_power_n_minus_1 = { 0xffffffffffffffff, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000 };
|
||||
const scalar_t sum_d = c_scalar_2_power_n_minus_1 * sum_of_powers(interm.z_sq, interm.c_bpp_log2_m);
|
||||
|
||||
DBG_PRINT("Hs(d): " << d.calc_hs());
|
||||
DBG_PRINT("sum(d): " << sum_d);
|
||||
|
||||
const scalar_t& y_inv = batch_for_inverse[interm.inv_y_offset];
|
||||
auto get_e_inv = [&](size_t i) { return batch_for_inverse[interm.inv_e_offset + i]; }; // i belongs to [0; L.size()-1]
|
||||
|
||||
// prepare s_vec (unlike the paper here we moved y-component out of s_vec for convenience, so s_vec'[x] = s_vec[~x & (MN-1)])
|
||||
// complexity (sc_mul's): MN+2*log2(MN)-2
|
||||
// the idea is the following:
|
||||
// s_vec[00000b] = ... * (e_4)^-1 * (e_3)^-1 * (e_2)^-1 * (e_1)^-1 * (e_0)^-1
|
||||
// s_vec[00101b] = ... * (e_4)^-1 * (e_3)^-1 * (e_2)^+1 * (e_1)^-1 * (e_0)^+1
|
||||
const size_t log2_mn = sig.L.size(); // at the beginning we made sure that sig.L.size() == c_bpp_log2_m + c_bpp_log2_n
|
||||
scalar_vec_t s_vec(interm.c_bpp_mn);
|
||||
s_vec[0] = get_e_inv(0);
|
||||
for (size_t i = 1; i < log2_mn; ++i)
|
||||
s_vec[0] *= get_e_inv(i); // s_vec[0] = (e_0)^-1 * (e_1)^-1 * .. (e_{log2_mn-1})^-1
|
||||
DBG_PRINT("[0] " << s_vec[0]);
|
||||
for (size_t i = 1; i < interm.c_bpp_mn; ++i)
|
||||
{
|
||||
size_t base_el_index = i & (i - 1); // base element index: 0, 0, 2, 0, 4, 4, 6, 0, 8, 8, 10... base element differs in one bit (0) from the current one (1)
|
||||
size_t bit_index = log2_mn - calc_lsb_32((uint32_t)i) - 1; // the bit index where current element has the difference with the base
|
||||
s_vec[i] = s_vec[base_el_index] * interm.e_sq[bit_index]; // (e_j)^-1 * (e_j)^2 = (e_j)^+1
|
||||
DBG_PRINT("[" << i << "] " << " " << base_el_index << ", " << bit_index << " : " << s_vec[i]);
|
||||
}
|
||||
|
||||
// prepare y_inv vector
|
||||
scalar_vec_t y_inverse_powers(interm.c_bpp_mn);
|
||||
y_inverse_powers[0] = 1;
|
||||
for (size_t i = 1; i < interm.c_bpp_mn; ++i)
|
||||
y_inverse_powers[i] = y_inverse_powers[i - 1] * y_inv;
|
||||
|
||||
// y^(mn+1)
|
||||
scalar_t y_power_mnp1 = interm.y;
|
||||
for (size_t i = 0; i < log2_mn; ++i)
|
||||
y_power_mnp1 *= y_power_mnp1;
|
||||
y_power_mnp1 *= interm.y;
|
||||
DBG_VAL_PRINT(y_power_mnp1);
|
||||
|
||||
// now calculate all multiplicands for common generators
|
||||
|
||||
// g vector multiplicands:
|
||||
// rwf * (r' * e * (1, y^-1, y^-2, ...) o s_vec + e^2 * z) =
|
||||
// rwf * r' * e * ((1, y^-1, ...) o s_vec) + rwf * e^2 * z * (1, 1, ...)
|
||||
scalar_t rwf_e_sq_z = rwf * interm.e_final_sq * interm.z;
|
||||
scalar_t rwf_r_e = rwf * interm.e_final * sig.r;
|
||||
for (size_t i = 0; i < interm.c_bpp_mn; ++i)
|
||||
g_scalars[i] += rwf_r_e * y_inverse_powers[i] * s_vec[i] + rwf_e_sq_z;
|
||||
|
||||
DBG_PRINT("Hs(g_scalars): " << g_scalars.calc_hs());
|
||||
|
||||
// h vector multiplicands:
|
||||
// rwf * (s' * e * s'_vec - e^2 * (d o y<^(mn) + 1_vec^(mn) * z))
|
||||
// rwf * s' * e * s'_vec - rwf * e^2 * z * (1, 1...) - rwf * e^2 * (d o y<^(mn))
|
||||
//scalar_t rwf_e_sq_z = rwf * interm.e_final_sq * interm.z;
|
||||
scalar_t rwf_s_e = rwf * sig.s * interm.e_final;
|
||||
scalar_t rwf_e_sq_y = rwf * interm.e_final_sq * interm.y;
|
||||
for (size_t i = interm.c_bpp_mn - 1; i != SIZE_MAX; --i)
|
||||
{
|
||||
h_scalars[i] += rwf_s_e * s_vec[interm.c_bpp_mn - 1 - i] - rwf_e_sq_z - rwf_e_sq_y * d[i];
|
||||
rwf_e_sq_y *= interm.y;
|
||||
}
|
||||
|
||||
DBG_PRINT("Hs(h_scalars): " << h_scalars.calc_hs());
|
||||
|
||||
// G point multiplicands:
|
||||
// rwf * (r' y s' - e ^ 2 * ((z - z ^ 2)*SUM(y^>mn) - z * y^(mn+1) * SUM(d)) =
|
||||
// = rwf * r' y s' - rwf * e^2 * (z - z ^ 2)*SUM(y^>mn) + rwf * e^2 * z * y^(mn+1) * SUM(d)
|
||||
G_scalar += rwf * sig.r * interm.y * sig.s + rwf_e_sq_y * sum_d * interm.z;
|
||||
G_scalar -= rwf * interm.e_final_sq * (interm.z - interm.z_sq) * sum_of_powers(interm.y, log2_mn);
|
||||
DBG_PRINT("sum_y: " << sum_of_powers(interm.y, log2_mn));
|
||||
DBG_PRINT("G_scalar: " << G_scalar);
|
||||
|
||||
// H point multiplicands:
|
||||
// rwf * delta
|
||||
H_scalar += rwf * sig.delta;
|
||||
DBG_PRINT("H_scalar: " << H_scalar);
|
||||
|
||||
// uncommon generators' multiplicands
|
||||
point_t summand_8 = c_point_0; // this summand to be multiplied by 8 before adding to the main summand
|
||||
// - rwf * e^2 * A0
|
||||
summand_8 -= rwf * interm.e_final_sq * interm.A0;
|
||||
DBG_PRINT("A0_scalar: " << c_scalar_Lm1 * interm.e_final_sq * rwf);
|
||||
|
||||
// - rwf * e^2 * y^(mn+1) * (SUM{j=1..m} (z^2)^j * V_j))
|
||||
scalar_t e_sq_y_mn1_z_sq_power = rwf * interm.e_final_sq * y_power_mnp1;
|
||||
for (size_t j = 0; j < bsc.commitments.size(); ++j)
|
||||
{
|
||||
e_sq_y_mn1_z_sq_power *= interm.z_sq;
|
||||
summand_8 -= e_sq_y_mn1_z_sq_power * bsc.commitments[j];
|
||||
DBG_PRINT("V_scalar[" << j << "]: " << c_scalar_Lm1 * e_sq_y_mn1_z_sq_power);
|
||||
}
|
||||
|
||||
// - rwf * e^2 * SUM{j=1..log(n)}(e_j^2 * L_j + e_j^-2 * R_j)
|
||||
scalar_t rwf_e_sq = rwf * interm.e_final_sq;
|
||||
for (size_t j = 0; j < log2_mn; ++j)
|
||||
{
|
||||
summand_8 -= rwf_e_sq * (interm.e_sq[j] * interm.L[j] + get_e_inv(j) * get_e_inv(j) * interm.R[j]);
|
||||
DBG_PRINT("L_scalar[" << j << "]: " << c_scalar_Lm1 * rwf_e_sq * interm.e_sq[j]);
|
||||
DBG_PRINT("R_scalar[" << j << "]: " << c_scalar_Lm1 * rwf_e_sq * get_e_inv(j) * get_e_inv(j));
|
||||
}
|
||||
|
||||
// - rwf * e * A - rwf * B = 0
|
||||
summand_8 -= rwf * interm.e_final * interm.A + rwf * interm.B;
|
||||
DBG_PRINT("A_scalar: " << c_scalar_Lm1 * rwf * interm.e_final);
|
||||
DBG_PRINT("B_scalar: " << c_scalar_Lm1 * rwf);
|
||||
|
||||
summand_8.modify_mul8();
|
||||
summand += summand_8;
|
||||
}
|
||||
|
||||
point_t GH_exponents = c_point_0;
|
||||
CT::calc_pedersen_commitment(G_scalar, H_scalar, GH_exponents);
|
||||
bool result = multiexp_and_check_being_zero<CT>(g_scalars, h_scalars, summand + GH_exponents);
|
||||
if (result)
|
||||
DBG_PRINT(ENDL << " . . . . bpp_verify() -- SUCCEEDED!!!" << ENDL);
|
||||
return result;
|
||||
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
|
||||
}
|
||||
|
||||
} // namespace crypto
|
||||
|
||||
#include "range_proof_bpp.h"
|
||||
|
|
|
|||
|
|
@ -487,6 +487,7 @@ struct test_keeper_t
|
|||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
#include "L2S.h"
|
||||
#include "crypto_tests_range_proofs.h"
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
|
|
@ -1843,6 +1844,7 @@ TEST(crypto, sc_get_bit)
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// test's runner
|
||||
//
|
||||
|
|
|
|||
182
tests/functional_tests/crypto_tests_range_proofs.h
Normal file
182
tests/functional_tests/crypto_tests_range_proofs.h
Normal file
|
|
@ -0,0 +1,182 @@
|
|||
// Copyright (c) 2021 Zano Project (https://zano.org/)
|
||||
// Copyright (c) 2021 sowle (val@zano.org, crypto.sowle@gmail.com)
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
#pragma once
|
||||
|
||||
// calc weighted inner pruduct of av and bv w.r.t. Vandermonde vector (y, y^2, y^3, ..., y^n)
|
||||
// <a, ((y, y^2, y^3, ...) o b)> = <c, (y, y^2, y^3, ...)> (<> -- standard inner product, o - componen-wise)
|
||||
// s.a. BP+ paper, pages 3-4
|
||||
bool wip_vandermonde(const scalar_vec_t& av, const scalar_vec_t& bv, const scalar_t& y, scalar_t& result)
|
||||
{
|
||||
result = 0;
|
||||
size_t n = av.size();
|
||||
if (n != bv.size())
|
||||
return false;
|
||||
|
||||
scalar_t y_powered = 1;
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
{
|
||||
y_powered *= y;
|
||||
result.assign_muladd(av[i] * bv[i], y_powered, result); // result.a += av[i] * bv[i] * y_powered;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static_assert(constexpr_floor_log2(0) == 0, "");
|
||||
static_assert(constexpr_floor_log2(1) == 0, "");
|
||||
static_assert(constexpr_floor_log2(2) == 1, "");
|
||||
static_assert(constexpr_floor_log2(3) == 1, "");
|
||||
static_assert(constexpr_floor_log2(4) == 2, "");
|
||||
static_assert(constexpr_floor_log2(5) == 2, "");
|
||||
static_assert(constexpr_floor_log2(64) == 6, "");
|
||||
static_assert(constexpr_floor_log2(100) == 6, "");
|
||||
static_assert(constexpr_floor_log2(100000000) == 26, "");
|
||||
static_assert(constexpr_floor_log2(0x7fffffffffffffff) == 62, "");
|
||||
static_assert(constexpr_floor_log2(SIZE_MAX) == 63, "");
|
||||
|
||||
static_assert(constexpr_ceil_log2(0) == 0, "");
|
||||
static_assert(constexpr_ceil_log2(1) == 0, "");
|
||||
static_assert(constexpr_ceil_log2(2) == 1, "");
|
||||
static_assert(constexpr_ceil_log2(3) == 2, "");
|
||||
static_assert(constexpr_ceil_log2(4) == 2, "");
|
||||
static_assert(constexpr_ceil_log2(5) == 3, "");
|
||||
static_assert(constexpr_ceil_log2(64) == 6, "");
|
||||
static_assert(constexpr_ceil_log2(100) == 7, "");
|
||||
static_assert(constexpr_ceil_log2(100000000) == 27, "");
|
||||
static_assert(constexpr_ceil_log2(0x7fffffffffffffff) == 63, "");
|
||||
static_assert(constexpr_ceil_log2(SIZE_MAX) == 64, "");
|
||||
|
||||
|
||||
TEST(bpp, basics)
|
||||
{
|
||||
/*
|
||||
srand(0);
|
||||
for (size_t i = 0; i < 10; ++i)
|
||||
std::cout << scalar_t::random().to_string_as_secret_key() << ENDL;
|
||||
*/
|
||||
|
||||
point_t H = hash_helper_t::hp(c_point_G);
|
||||
ASSERT_EQ(H, c_point_H);
|
||||
std::string h2_hash_str("h2_generator");
|
||||
point_t H2 = hash_helper_t::hp(h2_hash_str.c_str(), h2_hash_str.size());
|
||||
ASSERT_EQ(H2, c_point_H2);
|
||||
LOG_PRINT_L0("c_point_0 = " << c_point_0 << " = { " << c_point_0.to_hex_comma_separated_uint64_str() << " }");
|
||||
LOG_PRINT_L0("Zano G = " << c_point_G << " = { " << c_point_G.to_hex_comma_separated_bytes_str() << " }");
|
||||
LOG_PRINT_L0("Zano H = " << H << " = { " << H.to_hex_comma_separated_uint64_str() << " }");
|
||||
LOG_PRINT_L0("Zano H2 = " << H2 << " = { " << H2.to_hex_comma_separated_uint64_str() << " }");
|
||||
|
||||
scalar_vec_t values = { 5 };
|
||||
scalar_vec_t masks = { 0 };
|
||||
bpp_signature bpp_sig;
|
||||
std::vector<point_t> commitments;
|
||||
uint8_t err = 0;
|
||||
|
||||
bool r = bpp_gen<bpp_crypto_trait_zano<>>(values, masks, bpp_sig, commitments, &err);
|
||||
|
||||
ASSERT_TRUE(r);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
TEST(bpp, two)
|
||||
{
|
||||
std::vector<bpp_signature> signatures_vector;
|
||||
signatures_vector.reserve(10);
|
||||
std::vector<std::vector<point_t>> commitments_vector;
|
||||
commitments_vector.reserve(10);
|
||||
|
||||
std::vector<bpp_sig_commit_ref_t> sigs;
|
||||
uint8_t err = 0;
|
||||
bool r = false;
|
||||
|
||||
{
|
||||
signatures_vector.resize(signatures_vector.size() + 1);
|
||||
bpp_signature &bpp_sig = signatures_vector.back();
|
||||
commitments_vector.resize(commitments_vector.size() + 1);
|
||||
std::vector<point_t>& commitments = commitments_vector.back();
|
||||
|
||||
scalar_vec_t values = { 5 };
|
||||
scalar_vec_t masks = { scalar_t(77 + 256 * 77) };
|
||||
|
||||
r = bpp_gen<bpp_crypto_trait_zano<>>(values, masks, bpp_sig, commitments, &err);
|
||||
ASSERT_TRUE(r);
|
||||
|
||||
sigs.emplace_back(bpp_sig, commitments);
|
||||
}
|
||||
|
||||
{
|
||||
signatures_vector.resize(signatures_vector.size() + 1);
|
||||
bpp_signature &bpp_sig = signatures_vector.back();
|
||||
commitments_vector.resize(commitments_vector.size() + 1);
|
||||
std::vector<point_t>& commitments = commitments_vector.back();
|
||||
|
||||
scalar_vec_t values = { 5, 700, 8 };
|
||||
scalar_vec_t masks = { scalar_t(77 + 256 * 77), scalar_t(255), scalar_t(17) };
|
||||
|
||||
r = bpp_gen<bpp_crypto_trait_zano<>>(values, masks, bpp_sig, commitments, &err);
|
||||
ASSERT_TRUE(r);
|
||||
|
||||
sigs.emplace_back(bpp_sig, commitments);
|
||||
}
|
||||
|
||||
r = bpp_verify<bpp_crypto_trait_zano<>>(sigs, &err);
|
||||
ASSERT_TRUE(r);
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
TEST(bpp, power_256)
|
||||
{
|
||||
// make sure the BPP implementation supports values up to 2^256 (Zarcanum needs 2^170 since b_a < z * 2^64, where z = 2^106, s.a. Zarcanum preprint, page 21)
|
||||
std::vector<bpp_signature> signatures_vector;
|
||||
signatures_vector.reserve(10);
|
||||
std::vector<std::vector<point_t>> commitments_vector;
|
||||
commitments_vector.reserve(10);
|
||||
|
||||
std::vector<bpp_sig_commit_ref_t> sig_ñommit_refs;
|
||||
uint8_t err = 0;
|
||||
bool r = false;
|
||||
|
||||
{
|
||||
signatures_vector.resize(signatures_vector.size() + 1);
|
||||
bpp_signature &bpp_sig = signatures_vector.back();
|
||||
commitments_vector.resize(commitments_vector.size() + 1);
|
||||
std::vector<point_t>& commitments = commitments_vector.back();
|
||||
|
||||
scalar_vec_t values = { 5 };
|
||||
scalar_vec_t masks = { scalar_t(77 + 256 * 77) };
|
||||
|
||||
r = bpp_gen<bpp_crypto_trait_zano<>>(values, masks, bpp_sig, commitments, &err);
|
||||
ASSERT_TRUE(r);
|
||||
|
||||
sig_ñommit_refs.emplace_back(bpp_sig, commitments);
|
||||
}
|
||||
|
||||
{
|
||||
signatures_vector.resize(signatures_vector.size() + 1);
|
||||
bpp_signature &bpp_sig = signatures_vector.back();
|
||||
commitments_vector.resize(commitments_vector.size() + 1);
|
||||
std::vector<point_t>& commitments = commitments_vector.back();
|
||||
|
||||
scalar_vec_t values = { 5, 700, 8 };
|
||||
scalar_vec_t masks = { scalar_t(77 + 256 * 77), scalar_t(255), scalar_t(17) };
|
||||
|
||||
r = bpp_gen<bpp_crypto_trait_zano<>>(values, masks, bpp_sig, commitments, &err);
|
||||
ASSERT_TRUE(r);
|
||||
|
||||
sig_ñommit_refs.emplace_back(bpp_sig, commitments);
|
||||
}
|
||||
|
||||
r = bpp_verify<bpp_crypto_trait_zano<>>(sig_ñommit_refs, &err);
|
||||
ASSERT_TRUE(r);
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
Loading…
Add table
Reference in a new issue