1
0
Fork 0
forked from lthn/blockchain

generate_BGE_proof() first PoC implementation

This commit is contained in:
sowle 2023-03-27 02:48:42 +02:00
parent cfd01e80fe
commit 5b0431daf9
No known key found for this signature in database
GPG key ID: C07A24B2D89D49FC
2 changed files with 151 additions and 5 deletions

View file

@ -57,15 +57,160 @@ namespace crypto
bool generate_BGE_proof(const hash& context_hash, const std::vector<point_t>& ring, const scalar_t& secret, const size_t secret_index, BGE_proof& result, uint8_t* p_err /* = nullptr */)
{
static constexpr size_t n = 4; // TODO: @#@# move it out
DBG_PRINT(" - - - generate_BGE_proof - - -");
size_t N = ring.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(N > 0, 0);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(secret_index < N, 1);
size_t ring_size = ring.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ring_size > 0, 0);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(secret_index < ring_size, 1);
#ifndef NDEBUG
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ring[secret_index] == secret * crypto::c_point_X, 2);
#endif
const size_t m = std::max(1ull, constexpr_ceil_log_n(ring_size, n));
const size_t N = constexpr_pow(m, n);
const size_t mn = m * n;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(N <= N_max, 3);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(mn < mn_max, 4);
scalar_mat_t<n> a_mat(mn); // m x n matrix
a_mat.zero();
std::vector<size_t> l_digits(m); // l => n-ary gidits
size_t l = secret_index;
for(size_t j = 0; j < m; ++j)
{
for(size_t i = n - 1; i != 0; --i) // [n - 1; 1]
{
a_mat(j, i).make_random();
a_mat(j, 0) -= a_mat(j, i); // a[j; 0] = -sum( a[j; i] ), i in [1; n-1]
}
size_t digit = l % n; // j-th digit of secret_index
l_digits[j] = digit;
l = l / n;
}
#ifndef NDEBUG
for(size_t j = 0; j < m; ++j)
{
scalar_t a_sum{};
for(size_t i = 0; i != n; ++i)
a_sum += a_mat(j, i);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(a_sum.is_zero(), 230);
}
#endif
//
// coeffs calculation (naive implementation, consider optimization in future)
//
scalar_vec_t coeffs(N * m); // m x N matrix
coeffs.zero();
for(size_t i = 0; i < N; ++i)
{
coeffs[i] = c_scalar_1; // first row is (1, ..., 1)
size_t i_tmp = i;
size_t m_bound = 1;
for(size_t j = 0; j < m; ++j)
{
size_t i_j = i_tmp % n; // j-th digit of i
i_tmp /= n;
if (i_j == l_digits[j]) // true if j-th digits of i and l matches
{
scalar_t carry{};
for(size_t k = 0; k < m_bound; ++k)
{
scalar_t old = coeffs[k * N + i];
coeffs[k * N + i] *= a_mat(j, l_digits[j]);
coeffs[k * N + i] += carry;
carry = old;
}
if (m_bound < m)
coeffs[m_bound * N + i] += carry;
++m_bound;
}
else
{
for(size_t k = 0; k < m_bound; ++k)
coeffs[k * N + i] *= a_mat(j, l_digits[j]);
}
}
}
scalar_t r_A = scalar_t::random();
scalar_t r_B = scalar_t::random();
scalar_vec_t ro(m);
ro.make_random();
point_t A = c_point_0;
point_t B = c_point_0;
result.Pk.clear();
bool r = false, r2 = false;
for(size_t j = 0; j < m; ++j)
{
for(size_t i = 0; i < n; ++i)
{
const point_t& gen_1 = get_BGE_generator((j * n + i) * 2 + 0, r);
const point_t& gen_2 = get_BGE_generator((j * n + i) * 2 + 1, r2);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(r && r2, 5);
const scalar_t& a = a_mat(j, i);
A += a * gen_1 - a * a * gen_2;
if (l_digits[j] == i)
B += gen_1 - a * gen_2;
else
B += a * gen_2;
}
point_t Pk = c_point_0;
for(size_t i = 0; i < ring_size; ++i)
Pk += coeffs[j * N + i] * ring[i];
for(size_t i = ring_size; i < N; ++i)
Pk += coeffs[j * N + i] * ring[ring_size - 1];
Pk += ro[j] * c_point_X;
result.Pk.emplace_back(std::move((c_scalar_1div8 * Pk).to_public_key()));
}
A += r_A * c_point_X;
result.A = (c_scalar_1div8 * A).to_public_key();
B += r_B * c_point_X;
result.B = (c_scalar_1div8 * B).to_public_key();
hash_helper_t::hs_t hsc(1 + ring_size + 2 + m);
hsc.add_hash(context_hash);
hsc.add_points_array(ring);
hsc.add_pub_key(result.A);
hsc.add_pub_key(result.B);
hsc.add_pub_keys_array(result.Pk);
scalar_t x = hsc.calc_hash();
result.f.resize(m * (n - 1));
for(size_t j = 0; j < m; ++j)
{
for(size_t i = 1; i < n; ++i)
{
result.f[j * (n - 1) + i - 1] = a_mat(j, i);
if (l_digits[j] == i)
result.f[j * (n - 1) + i - 1] += x;
}
}
result.y = r_A + x * r_B;
result.z = 0;
scalar_t x_power = c_scalar_1;
for(size_t k = 0; k < m; ++k)
{
result.z -= x_power * ro[k];
x_power *= x;
}
result.z += secret * x_power;
return true;
}

View file

@ -20,12 +20,13 @@ namespace crypto
// Disclaimer: shouldn't be used in production code until the security proofs and the code are peer-reviewed.
//
// m+2 group elements, m(n-1)+2 field elements
struct BGE_proof
{
public_key A; // premultiplied by 1/8
public_key B; // premultiplied by 1/8
std::vector<public_key> Pk; // premultiplied by 1/8
scalar_vec_t f;
std::vector<public_key> Pk; // premultiplied by 1/8, size = m
scalar_vec_t f; // size = m * (n - 1)
scalar_t y;
scalar_t z;
};