// Copyright (c) 2022 Zano Project // Copyright (c) 2022 sowle (val@zano.org, crypto.sowle@gmail.com) // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. // // This file contains implementation of CLSAG (s.a. https://eprint.iacr.org/2019/654.pdf by Goodel at el) // #include "clsag.h" //#include "misc_log_ex.h" #include "../currency_core/crypto_config.h" namespace crypto { #define DBG_VAL_PRINT(x) (void(0)) // std::cout << #x ": " << x << std::endl #define DBG_PRINT(x) (void(0)) // std::cout << x << std::endl bool generate_CLSAG_GG(const hash& m, const std::vector& ring, const point_t& pseudo_out_amount_commitment, const key_image& ki, const scalar_t& secret_x, const scalar_t& secret_f, uint64_t secret_index, CLSAG_GG_signature& sig) { size_t ring_size = ring.size(); CRYPTO_CHECK_AND_THROW_MES(ring_size > 0, "ring size is zero"); CRYPTO_CHECK_AND_THROW_MES(secret_index < ring_size, "secret_index is out of range"); // calculate key images point_t ki_base = hash_helper_t::hp(ring[secret_index].stealth_address); point_t key_image = secret_x * ki_base; CRYPTO_CHECK_AND_THROW_MES(key_image == point_t(ki), "key image 0 mismatch"); point_t K1_div8 = (c_scalar_1div8 * secret_f) * ki_base; K1_div8.to_public_key(sig.K1); point_t K1 = K1_div8; K1.modify_mul8(); // calculate aggregation coefficients hash_helper_t::hs_t hsc(3 + 2 * ring_size); hsc.add_scalar(m); for(size_t i = 0; i < ring_size; ++i) { hsc.add_pub_key(ring[i].stealth_address); hsc.add_pub_key(ring[i].amount_commitment); } hsc.add_point(pseudo_out_amount_commitment); hsc.add_key_image(ki); hash input_hash = hsc.calc_hash_no_reduce(); hsc.add_32_chars(CRYPTO_HDS_CLSAG_GG_LAYER_0); hsc.add_hash(input_hash); scalar_t agg_coeff_0 = hsc.calc_hash(); DBG_VAL_PRINT(agg_coeff_0); hsc.add_32_chars(CRYPTO_HDS_CLSAG_GG_LAYER_1); hsc.add_hash(input_hash); scalar_t agg_coeff_1 = hsc.calc_hash(); DBG_VAL_PRINT(agg_coeff_1); // calculate aggregate pub keys std::vector W_pub_keys; W_pub_keys.reserve(ring_size); for(size_t i = 0; i < ring_size; ++i) { W_pub_keys.emplace_back(agg_coeff_0 * point_t(ring[i].stealth_address) + agg_coeff_1 * (point_t(ring[i].amount_commitment).modify_mul8() - pseudo_out_amount_commitment)); DBG_VAL_PRINT(W_pub_keys[i]); } // aggregate secret key scalar_t w_sec_key = agg_coeff_0 * secret_x + agg_coeff_1 * secret_f; // calculate aggregate key image point_t W_key_image = agg_coeff_0 * key_image + agg_coeff_1 * K1; DBG_VAL_PRINT(W_key_image); // initial commitment scalar_t alpha = scalar_t::random(); hsc.add_32_chars(CRYPTO_HDS_CLSAG_GG_CHALLENGE); hsc.add_hash(input_hash); hsc.add_point(alpha * c_point_G); hsc.add_point(alpha * ki_base); scalar_t c_prev = hsc.calc_hash(); // c_{secret_index + 1} sig.r.clear(); sig.r.reserve(ring_size); for(size_t i = 0; i < ring_size; ++i) sig.r.emplace_back(scalar_t::random()); for(size_t j = 0, i = (secret_index + 1) % ring_size; j < ring_size - 1; ++j, i = (i + 1) % ring_size) { if (i == 0) sig.c = c_prev; // c_0 hsc.add_32_chars(CRYPTO_HDS_CLSAG_GG_CHALLENGE); hsc.add_hash(input_hash); hsc.add_point(sig.r[i] * c_point_G + c_prev * W_pub_keys[i]); hsc.add_point(sig.r[i] * hash_helper_t::hp(ring[i].stealth_address) + c_prev * W_key_image); c_prev = hsc.calc_hash(); // c_{i + 1} } if (secret_index == 0) sig.c = c_prev; sig.r[secret_index] = alpha - c_prev * w_sec_key; return true; } bool verify_CLSAG_GG(const hash& m, const std::vector& ring, const crypto::public_key& pseudo_out_amount_commitment, const key_image& ki, const CLSAG_GG_signature& sig) { size_t ring_size = ring.size(); CRYPTO_CHECK_AND_THROW_MES(ring_size > 0, "ring size is zero"); CRYPTO_CHECK_AND_THROW_MES(ring_size == sig.r.size(), "ring size != r size"); point_t key_image(ki); CRYPTO_CHECK_AND_THROW_MES(key_image.is_in_main_subgroup(), "key image 0 does not belong to the main subgroup"); point_t pseudo_out_amount_commitment_pt(pseudo_out_amount_commitment); pseudo_out_amount_commitment_pt.modify_mul8(); // calculate aggregation coefficients hash_helper_t::hs_t hsc(3 + 2 * ring_size); hsc.add_scalar(m); for(size_t i = 0; i < ring_size; ++i) { hsc.add_pub_key(ring[i].stealth_address); hsc.add_pub_key(ring[i].amount_commitment); } hsc.add_point(pseudo_out_amount_commitment_pt); hsc.add_key_image(ki); hash input_hash = hsc.calc_hash_no_reduce(); hsc.add_32_chars(CRYPTO_HDS_CLSAG_GG_LAYER_0); hsc.add_hash(input_hash); scalar_t agg_coeff_0 = hsc.calc_hash(); DBG_VAL_PRINT(agg_coeff_0); hsc.add_32_chars(CRYPTO_HDS_CLSAG_GG_LAYER_1); hsc.add_hash(input_hash); scalar_t agg_coeff_1 = hsc.calc_hash(); DBG_VAL_PRINT(agg_coeff_1); // calculate aggregate pub keys std::vector W_pub_keys; W_pub_keys.reserve(ring_size); for(size_t i = 0; i < ring_size; ++i) { W_pub_keys.emplace_back(agg_coeff_0 * point_t(ring[i].stealth_address) + agg_coeff_1 * (point_t(ring[i].amount_commitment).modify_mul8() - pseudo_out_amount_commitment_pt)); DBG_VAL_PRINT(W_pub_keys[i]); } // calculate aggregate key image point_t W_key_image = agg_coeff_0 * point_t(ki) + agg_coeff_1 * point_t(sig.K1).modify_mul8(); DBG_VAL_PRINT(W_key_image); scalar_t c_prev = sig.c; for(size_t i = 0; i < ring_size; ++i) { hsc.add_32_chars(CRYPTO_HDS_CLSAG_GG_CHALLENGE); hsc.add_hash(input_hash); hsc.add_point(sig.r[i] * c_point_G + c_prev * W_pub_keys[i]); hsc.add_point(sig.r[i] * hash_helper_t::hp(ring[i].stealth_address) + c_prev * W_key_image); c_prev = hsc.calc_hash(); // c_{i + 1} } return c_prev == sig.c; } } // namespace crypto