// Copyright (c) 2020 Zano Project (https://zano.org/) // Copyright (c) 2020 Locksmith (acmxddk@gmail.com) // Copyright (c) 2020 sowle (crypto.sowle@gmail.com) // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #pragma once // // This file contains the implementation of L2S membership proof protocol // and a linkable ring signature scheme based on it. // point_t ml2s_rsum_impl(size_t n, size_t N, std::vector::const_iterator X_array_bg_it, const std::vector& c1_array, const std::vector& c3_array, const scalar_t& cn) { if (n == 1) return *X_array_bg_it + cn * *(X_array_bg_it + 1); // n >= 2, N >= 4 return ml2s_rsum_impl(n - 1, N / 2, X_array_bg_it, c1_array, c3_array, c1_array[n - 2]) + cn * ml2s_rsum_impl(n - 1, N / 2, X_array_bg_it + N / 2, c1_array, c3_array, c3_array[n - 2]); } bool ml2s_rsum(size_t n, const std::vector& X_array, const std::vector& c1_array, const std::vector& c3_array, point_t& result) { size_t N = (size_t)1 << n; CHECK_AND_ASSERT_MES(n != 0, false, "n == 0"); CHECK_AND_ASSERT_MES(N == X_array.size(), false, "|X_array| != N, " << X_array.size() << ", " << N); CHECK_AND_ASSERT_MES(c1_array.size() == n, false, "|c1_array| != n, " << c1_array.size() << ", " << n); CHECK_AND_ASSERT_MES(c3_array.size() == n - 1, false, "|c3_array| != n - 1, " << c3_array.size() << ", " << n - 1); result = ml2s_rsum_impl(n, N, X_array.begin(), c1_array, c3_array, c1_array[n - 1]); return true; } struct ml2s_signature_element { point_t Z0; point_t T0; scalar_t t0; point_t Z; std::vector r_array; // size = n std::vector H_array; // size = n point_t T; scalar_t t; }; struct ml2s_signature { scalar_t z; std::vector elements; // size = L }; size_t log2sz(size_t x) { size_t r = 0; while (x > 1) x >>= 1, ++r; return r; } template T invert_last_bit(T v) { return v ^ 1; } template bool is_power_of_2(T v) { while (v > 1) { if (v & 1) return false; v <<= 1; } return true; } bool ml2s_lnk_sig_verif(const scalar_t& m, const std::vector& B_array, const ml2s_signature& signature, uint8_t* p_err = nullptr, std::vector* p_I_array = nullptr) { #define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \ if (!(cond)) { LOG_PRINT_RED("ml2s_lnk_sig_verif: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \ if (p_err) *p_err = err_code; return false; } auto hash_point_lambda = [&signature](const point_t& point) { return point + signature.z * hash_helper_t::hp(point); }; size_t L = signature.elements.size(); CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(L > 0, 0); size_t n = signature.elements[0].r_array.size(); CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(n < 32, 4); size_t N = (size_t)1 << n; CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(B_array.size() == N / 2, 5); std::vector local_I_array; if (p_I_array == nullptr) p_I_array = &local_I_array; p_I_array->resize(L); std::vector A_array(L); for (size_t i = 0; i < L; ++i) { (*p_I_array)[i] = (signature.elements[i].Z0 - c_point_G) / signature.z; A_array[i] = signature.elements[i].Z0; CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(signature.elements[i].r_array.size() == n, 1); CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(signature.elements[i].H_array.size() == n, 2); } scalar_t z_ = hash_helper_t::hs(m, B_array, *p_I_array); CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(z_ == signature.z, 3); scalar_t e = hash_helper_t::hs(signature.z); std::vector P_array(B_array.size()); for (size_t i = 0; i < B_array.size(); ++i) P_array[i] = hash_point_lambda(B_array[i]); point_t Q_shift = hash_helper_t::hs(A_array, P_array) * c_point_G; CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(P_array.size() * 2 == N, 6); std::vector X_array(N); // X_array = { P_array[0], Q_array[0], P_array[1], Q_array[1], etc. } for (size_t i = 0; i < N; ++i) { if (i % 2 == 0) X_array[i] = P_array[i / 2]; else X_array[i] = hash_point_lambda(Q_shift + B_array[i / 2]); } // challenge c0 hash_helper_t::hs_t hs_calculator; hs_calculator.reserve(1 + N + 3 * L); hs_calculator.add_scalar(e); hs_calculator.add_points_array(X_array); for (size_t i = 0; i < L; ++i) { auto& sel = signature.elements[i]; hs_calculator.add_point(sel.Z0); hs_calculator.add_point(sel.T0); hs_calculator.add_point(sel.Z); } e = hs_calculator.calc_hash(); scalar_t c0 = e; // check t0 * Z0 + c0 * Z == T0 for (size_t i = 0; i < L; ++i) { auto& sel = signature.elements[i]; CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t0 * sel.Z0 + c0 * sel.Z == sel.T0, 7); } // challenges c11, c13 std::vector c1_array; // counting from 0, so c11 is c1_array[0], will have n elements std::vector c3_array; // the same, will have n - 1 elements hs_calculator.add_scalar(e); for (size_t i = 0; i < L; ++i) { auto& sel = signature.elements[i]; hs_calculator.add_scalar(sel.t0); hs_calculator.add_point(sel.H_array[0]); } e = hs_calculator.calc_hash(); c1_array.emplace_back(e); c3_array.emplace_back(hash_helper_t::hs(e)); // ci1, ci3 for i in [2; n] -- corresponds c1_array for i in [1; n - 1], c3_array for i in [1; n - 2] for (size_t i = 1; i < n; ++i) { hs_calculator.add_scalar(e); for (size_t j = 0; j < L; ++j) { auto& sel = signature.elements[j]; hs_calculator.add_scalar(sel.r_array[i - 1]); hs_calculator.add_point(sel.H_array[i]); } e = hs_calculator.calc_hash(); c1_array.emplace_back(e); if (i != n - 1) c3_array.emplace_back(hash_helper_t::hs(e)); } // challenge c hs_calculator.add_scalar(e); for (size_t i = 0; i < L; ++i) { auto& sel = signature.elements[i]; hs_calculator.add_scalar(sel.r_array[n - 1]); hs_calculator.add_point(sel.T); } scalar_t c = hs_calculator.calc_hash(); // Rsum point_t R = c_point_G; CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ml2s_rsum(n, X_array, c1_array, c3_array, R), 8); // final checks for (size_t i = 0; i < L; ++i) { auto& sel = signature.elements[i]; point_t S = sel.Z; for (size_t j = 0; j < n; ++j) { S = S + sel.r_array[j] * sel.H_array[j]; CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(!S.is_zero(), 9); CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.r_array[j] != 0, 10); CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(!sel.H_array[j].is_zero(), 11); } CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t * S + c * R == sel.T, 12); } return true; #undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE }