// Copyright (c) 2014-2018 Zano Project // Copyright (c) 2014-2018 The Louisdor Project // Copyright (c) 2012-2013 The Boolberry developers // Copyright (c) 2017-2025 Lethean (https://lt.hn) // // Licensed under the European Union Public Licence (EUPL) version 1.2. // You may obtain a copy of the licence at: // // https://joinup.ec.europa.eu/software/page/eupl/licence-eupl // // The EUPL is a copyleft licence that is compatible with the MIT/X11 // licence used by the original projects; the MIT terms are therefore // considered “grandfathered” under the EUPL for this code. // // SPDX‑License‑Identifier: EUPL-1.2 // #include #include #include #include #include #include "misc_log_ex.h" #include "common/int-util.h" #include "crypto/hash.h" #include "config/currency_config.h" #include "difficulty.h" #include "profile_tools.h" namespace currency { using std::size_t; using std::uint64_t; using std::vector; //#if defined(_MSC_VER) //#include //#include static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) { boost::multiprecision::uint128_t res = boost::multiprecision::uint128_t(a) * b; low = (res & 0xffffffffffffffffLL).convert_to(); high = (res >> 64).convert_to(); //low = _umul128(a, b, &high); //low = UnsignedMultiply128(a, b, &high); } /* #else static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) { typedef unsigned __int128 uint128_t; uint128_t res = (uint128_t)a * (uint128_t)b; low = (uint64_t)res; high = (uint64_t)(res >> 64); } #endif */ static inline bool cadd(uint64_t a, uint64_t b) { return a + b < a; } static inline bool cadc(uint64_t a, uint64_t b, bool c) { return a + b < a || (c && a + b == (uint64_t)-1); } #if defined(_MSC_VER) #ifdef max #undef max #endif #endif const wide_difficulty_type max64bit(std::numeric_limits::max()); const boost::multiprecision::uint256_t max128bit(std::numeric_limits::max()); const boost::multiprecision::uint512_t max256bit(std::numeric_limits::max()); bool check_hash(const crypto::hash &hash_, wide_difficulty_type difficulty) { //revert byte order crypto::hash h = {}; for (size_t i = 0; i != sizeof(h); i++) { *(((char*)&h) + (sizeof(h) - (i + 1))) = *(((char*)&hash_) + i); } PROFILE_FUNC("check_hash"); if (difficulty < max64bit) { // if can convert to small difficulty - do it std::uint64_t dl = difficulty.convert_to(); uint64_t low, high, top, cur; // First check the highest word, this will most likely fail for a random hash. mul(swap64le(((const uint64_t *)&h)[3]), dl, top, high); if (high != 0) return false; mul(swap64le(((const uint64_t *)&h)[0]), dl, low, cur); mul(swap64le(((const uint64_t *)&h)[1]), dl, low, high); bool carry = cadd(cur, low); cur = high; mul(swap64le(((const uint64_t *)&h)[2]), dl, low, high); carry = cadc(cur, low, carry); carry = cadc(high, top, carry); return !carry; } // fast check if (((const uint64_t *)&h)[3] > 0) return false; // usual slow check boost::multiprecision::uint512_t hashVal = 0; for(int i = 0; i < 4; i++) { hashVal <<= 64; hashVal |= swap64le(((const uint64_t *) &h)[3-i]); } return (hashVal * difficulty <= max256bit); } uint64_t difficulty_to_boundary(wide_difficulty_type difficulty) { boost::multiprecision::uint256_t nominal_hash = std::numeric_limits::max(); nominal_hash = nominal_hash / difficulty; uint64_t res = (nominal_hash >> 192).convert_to(); return res; } void difficulty_to_boundary_long(wide_difficulty_type difficulty, crypto::hash& result) { boost::multiprecision::uint256_t nominal_hash = std::numeric_limits::max(); nominal_hash = nominal_hash / difficulty; static_assert(sizeof(uint64_t) * 4 == sizeof(result), "!"); for (size_t i = 0; i < 4; ++i) { (reinterpret_cast(&result))[i] = nominal_hash.convert_to(); nominal_hash >>= 64; } } void get_cut_location_from_len(size_t length, size_t& cut_begin, size_t& cut_end, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST) { if (length <= REDEF_DIFFICULTY_WINDOW) { cut_begin = 0; cut_end = length; } else { cut_begin = REDEF_DIFFICULTY_WINDOW - REDEF_DIFFICULTY_CUT_LAST + 1; cut_end = cut_begin + (REDEF_DIFFICULTY_WINDOW - (REDEF_DIFFICULTY_CUT_OLD + REDEF_DIFFICULTY_CUT_LAST)); } } void get_adjustment_zone(size_t length, size_t& cut_begin, size_t& cut_end, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST) { //cutoff DIFFICULTY_LAG if (length <= REDEF_DIFFICULTY_WINDOW - (REDEF_DIFFICULTY_CUT_OLD + REDEF_DIFFICULTY_CUT_LAST)) { cut_begin = 0; cut_end = length; } else { cut_begin = REDEF_DIFFICULTY_CUT_LAST; cut_end = cut_begin + (REDEF_DIFFICULTY_WINDOW - (REDEF_DIFFICULTY_CUT_OLD + REDEF_DIFFICULTY_CUT_LAST)); if (cut_end > length) cut_end = length; } CHECK_AND_ASSERT_THROW_MES(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length, "validation in next_difficulty is failed"); } wide_difficulty_type get_adjustment_for_zone(vector& timestamps_sorted, vector& cumulative_difficulties, size_t target_seconds, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST) { size_t length = timestamps_sorted.size(); size_t cut_begin = 0; size_t cut_end = 0; get_adjustment_zone(length, cut_begin, cut_end, REDEF_DIFFICULTY_WINDOW, REDEF_DIFFICULTY_CUT_OLD, REDEF_DIFFICULTY_CUT_LAST); uint64_t time_span = timestamps_sorted[cut_begin] - timestamps_sorted[cut_end - 1]; if (time_span == 0) { time_span = 1; } wide_difficulty_type total_work = cumulative_difficulties[cut_begin] - cumulative_difficulties[cut_end - 1]; boost::multiprecision::uint256_t res = (boost::multiprecision::uint256_t(total_work) * target_seconds + time_span - 1) / time_span; if (res > max128bit) return 0; // to behave like previous implementation, may be better return max128bit? return res.convert_to(); } wide_difficulty_type next_difficulty_1(vector& timestamps, vector& cumulative_difficulties, size_t target_seconds, const wide_difficulty_type& difficulty_starter) { // timestamps - first is latest, back - is oldest timestamps if (timestamps.size() > DIFFICULTY_WINDOW) { timestamps.resize(DIFFICULTY_WINDOW); cumulative_difficulties.resize(DIFFICULTY_WINDOW); } size_t length = timestamps.size(); CHECK_AND_ASSERT_MES(length == cumulative_difficulties.size(), 0, "Check \"length == cumulative_difficulties.size()\" failed"); if (length <= 1) { return difficulty_starter; } static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small"); CHECK_AND_ASSERT_MES(length <= DIFFICULTY_WINDOW, 0, "length <= DIFFICULTY_WINDOW check failed, length=" << length); sort(timestamps.begin(), timestamps.end(), std::greater()); static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large"); wide_difficulty_type dif_slow = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW, DIFFICULTY_CUT/2, DIFFICULTY_CUT/2); wide_difficulty_type dif_medium = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW/3, DIFFICULTY_CUT / 8, DIFFICULTY_CUT / 12); wide_difficulty_type dif_fast = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW/18, DIFFICULTY_CUT / 10, 2); uint64_t devider = 1; wide_difficulty_type summ = dif_slow; if (dif_medium != 0) { summ += dif_medium; ++devider; } if (dif_fast != 0) { summ += dif_fast; ++devider; } return summ / devider; } wide_difficulty_type next_difficulty_2(vector& timestamps, vector& cumulative_difficulties, size_t target_seconds, const wide_difficulty_type& difficulty_starter) { // timestamps - first is latest, back - is oldest timestamps if (timestamps.size() > DIFFICULTY_WINDOW) { timestamps.resize(DIFFICULTY_WINDOW); cumulative_difficulties.resize(DIFFICULTY_WINDOW); } size_t length = timestamps.size(); CHECK_AND_ASSERT_MES(length == cumulative_difficulties.size(), 0, "Check \"length == cumulative_difficulties.size()\" failed"); if (length <= 1) { return difficulty_starter; } static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small"); CHECK_AND_ASSERT_MES(length <= DIFFICULTY_WINDOW, 0, "length <= DIFFICULTY_WINDOW check failed, length=" << length); sort(timestamps.begin(), timestamps.end(), std::greater()); static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large"); wide_difficulty_type dif_slow = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW, DIFFICULTY_CUT / 2, DIFFICULTY_CUT / 2); wide_difficulty_type dif_medium = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW / 3, DIFFICULTY_CUT / 8, DIFFICULTY_CUT / 12); uint64_t devider = 1; wide_difficulty_type summ = dif_slow; if (dif_medium != 0) { summ += dif_medium; ++devider; } return summ / devider; } //-------------------------------------------------------------- // LWMA-1 difficulty algorithm (zawy12) // Linear Weighted Moving Average — adjusts every block with a // ~60-block window. Battle-tested in Monero against ASICs and // botnets. Much faster convergence than the 720-block Zano algo. //-------------------------------------------------------------- wide_difficulty_type next_difficulty_lwma(vector& timestamps, vector& cumulative_difficulties, size_t target_seconds, const wide_difficulty_type& difficulty_starter) { const int64_t T = static_cast(target_seconds); const size_t N = 60; // LWMA window size (solve times) size_t length = timestamps.size(); CHECK_AND_ASSERT_MES(length == cumulative_difficulties.size(), difficulty_starter, "LWMA: timestamps/difficulties size mismatch"); if (length <= 1) return difficulty_starter; // We need at most N+1 entries (giving N solve times) if (length > N + 1) { timestamps.resize(N + 1); cumulative_difficulties.resize(N + 1); length = N + 1; } // Input arrives newest-first; LWMA needs oldest-first std::reverse(timestamps.begin(), timestamps.end()); std::reverse(cumulative_difficulties.begin(), cumulative_difficulties.end()); // Now: [0]=oldest … [length-1]=newest size_t n = length - 1; // number of solve-time intervals int64_t weighted_solvetimes = 0; for (size_t i = 1; i <= n; i++) { int64_t st = static_cast(timestamps[i]) - static_cast(timestamps[i - 1]); // Clamp to [-6T, 6T] to limit timestamp-manipulation impact if (st < -(6 * T)) st = -(6 * T); if (st > (6 * T)) st = (6 * T); weighted_solvetimes += st * static_cast(i); } // Guard against zero / negative (would be pathological timestamps) if (weighted_solvetimes <= 0) weighted_solvetimes = 1; wide_difficulty_type total_work = cumulative_difficulties[n] - cumulative_difficulties[0]; // LWMA-1 formula: // next_D = total_work * T * (n+1) / (2 * weighted_solvetimes * n) // // The divisor (n+1)/(2*n) normalises the linear weights 1..n // whose sum is n*(n+1)/2. boost::multiprecision::uint256_t next_d = (boost::multiprecision::uint256_t(total_work) * T * (n + 1)) / (boost::multiprecision::uint256_t(2) * weighted_solvetimes * n); if (next_d < 1) next_d = 1; if (next_d > max128bit) return difficulty_starter; return next_d.convert_to(); } }