1
0
Fork 0
forked from lthn/blockchain
blockchain/contrib/epee/include/net/net_helper.h

844 lines
28 KiB
C++

// Copyright (c) 2019, anonimal, <anonimal@zano.org>
// Copyright (c) 2006-2013, Andrey N. Sabelnikov, www.sabelnikov.net
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the Andrey N. Sabelnikov nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#pragma once
//#include <Winsock2.h>
//#include <Ws2tcpip.h>
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <istream>
#include <ostream>
#include <string>
#include <boost/asio.hpp>
#include <boost/asio/ssl.hpp>
#include <boost/preprocessor/selection/min.hpp>
#include <boost/lambda/bind.hpp>
#include <boost/lambda/lambda.hpp>
#include <boost/interprocess/detail/atomic.hpp>
#include "net/net_utils_base.h"
#include "misc_language.h"
#include "misc_helpers.h"
//#include "profile_tools.h"
#include "../string_tools.h"
#ifndef MAKE_IP
#define MAKE_IP( a1, a2, a3, a4 ) (a1|(a2<<8)|(a3<<16)|(a4<<24))
#endif
namespace epee
{
namespace net_utils
{
template<bool is_ssl>
struct socket_backend;
template<>
struct socket_backend<true>
{
socket_backend(boost::asio::io_service& _io_service): m_ssl_context(boost::asio::ssl::context::sslv23), m_socket(_io_service, m_ssl_context)
{
// Create a context that uses the default paths for
// finding CA certificates.
m_ssl_context.set_default_verify_paths();
/*m_socket.set_verify_mode(boost::asio::ssl::verify_peer);
m_socket.set_verify_callback(
boost::bind(&socket_backend::verify_certificate, this, _1, _2));*/
}
/*
bool verify_certificate(bool preverified,
boost::asio::ssl::verify_context& ctx)
{
std::cout << "verify_certificate (preverified " << preverified << " ) ...\n";
// The verify callback can be used to check whether the certificate that is
// being presented is valid for the peer. For example, RFC 2818 describes
// the steps involved in doing this for HTTPS. Consult the OpenSSL
// documentation for more details. Note that the callback is called once
// for each certificate in the certificate chain, starting from the root
// certificate authority.
// In this example we will simply print the certificate's subject name.
char subject_name[256];
X509* cert = X509_STORE_CTX_get_current_cert(ctx.native_handle());
X509_NAME_oneline(X509_get_subject_name(cert), subject_name, 256);
std::cout << "Verifying " << subject_name << "\n";
// dummy verification
return true;
}*/
void set_domain(const std::string& domain_name)
{
SSL_set_tlsext_host_name(m_socket.native_handle(), domain_name.c_str());
}
boost::asio::ip::tcp::socket& get_socket()
{
return m_socket.next_layer();
}
auto& get_stream()
{
return m_socket;
}
void on_after_connect()
{
LOG_PRINT_L2("SSL Handshake....");
m_socket.handshake(boost::asio::ssl::stream_base::client);
LOG_PRINT_L2("SSL Handshake OK");
}
private:
boost::asio::ssl::context m_ssl_context;
boost::asio::ssl::stream<boost::asio::ip::tcp::socket> m_socket;
};
template<>
struct socket_backend<false>
{
socket_backend(boost::asio::io_service& _io_service): m_socket(_io_service)
{}
boost::asio::ip::tcp::socket& get_socket()
{
return m_socket;
}
void set_domain(const std::string& domain_name)
{
}
boost::asio::ip::tcp::socket& get_stream()
{
return m_socket;
}
void on_after_connect()
{
}
void reset()
{
}
private:
boost::asio::ip::tcp::socket m_socket;
};
template<bool is_ssl>
struct socket_backend_resetable
{
socket_backend_resetable(boost::asio::io_service& _io_service) : mr_io_service(_io_service), m_pbackend(std::make_shared<socket_backend<is_ssl>>(_io_service))
{}
boost::asio::ip::tcp::socket& get_socket()
{
return m_pbackend->get_socket();
}
void set_domain(const std::string& domain_name)
{
return m_pbackend->set_domain(domain_name);
}
auto& get_stream()
{
return m_pbackend->get_stream();
}
void on_after_connect()
{
return m_pbackend->on_after_connect();
}
void reset()
{
m_pbackend = std::make_shared<socket_backend<is_ssl>>(mr_io_service);
}
private:
boost::asio::io_service& mr_io_service;
std::shared_ptr<socket_backend<is_ssl>> m_pbackend;
};
template<bool is_ssl>
class blocked_mode_client_t
{
struct handler_obj
{
handler_obj(boost::system::error_code& error, size_t& bytes_transferred) :ref_error(error), ref_bytes_transferred(bytes_transferred)
{}
handler_obj(const handler_obj& other_obj) :ref_error(other_obj.ref_error), ref_bytes_transferred(other_obj.ref_bytes_transferred)
{}
boost::system::error_code& ref_error;
size_t& ref_bytes_transferred;
void operator()(const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes read.
)
{
ref_error = error;
ref_bytes_transferred = bytes_transferred;
}
};
public:
inline
blocked_mode_client_t() :m_sct_back(m_io_service),
m_initialized(false),
m_connected(false),
m_deadline(m_io_service),
m_shutdowned(0),
m_connect_timeout{},
m_reciev_timeout{}
{
m_initialized = true;
// No deadline is required until the first socket operation is started. We
// set the deadline to positive infinity so that the actor takes no action
// until a specific deadline is set.
m_deadline.expires_at(boost::posix_time::pos_infin);
// Start the persistent actor that checks for deadline expiry.
check_deadline();
}
inline
~blocked_mode_client_t()
{
NESTED_TRY_ENTRY();
//profile_tools::local_coast lc("~blocked_mode_client()", 3);
shutdown();
NESTED_CATCH_ENTRY(__func__);
}
inline void set_recv_timeout(int reciev_timeout)
{
m_reciev_timeout = reciev_timeout;
}
inline
bool connect(const std::string& addr, int port, unsigned int connect_timeout, unsigned int reciev_timeout, const std::string& bind_ip = "0.0.0.0")
{
return connect(addr, std::to_string(port), connect_timeout, reciev_timeout, bind_ip);
}
inline
bool connect(const std::string& addr, const std::string& port, unsigned int connect_timeout, unsigned int reciev_timeout, const std::string& bind_ip = "0.0.0.0")
{
LOG_PRINT_L1("Connecting to " << addr << ":" << port << ", cn_timeout: " << connect_timeout << ", rv_timeout: " << reciev_timeout);
m_connect_timeout = connect_timeout;
m_reciev_timeout = reciev_timeout;
m_connected = false;
if (!m_reciev_timeout)
m_reciev_timeout = m_connect_timeout;
try
{
m_sct_back.get_socket().close();
// Get a list of endpoints corresponding to the server name.
m_sct_back.reset();
//////////////////////////////////////////////////////////////////////////
boost::asio::ip::tcp::resolver resolver(m_io_service);
boost::asio::ip::tcp::resolver::query query(boost::asio::ip::tcp::v4(), addr, port);
boost::asio::ip::tcp::resolver::iterator iterator = resolver.resolve(query);
boost::asio::ip::tcp::resolver::iterator end;
if (iterator == end)
{
LOG_ERROR("Failed to resolve " << addr);
return false;
}
//////////////////////////////////////////////////////////////////////////
m_sct_back.set_domain(addr);
//boost::asio::ip::tcp::endpoint remote_endpoint(boost::asio::ip::address::from_string(addr.c_str()), port);
boost::asio::ip::tcp::endpoint remote_endpoint(*iterator);
m_sct_back.get_socket().open(remote_endpoint.protocol());
if (bind_ip != "0.0.0.0" && bind_ip != "0" && bind_ip != "")
{
boost::asio::ip::tcp::endpoint local_endpoint(boost::asio::ip::address::from_string(addr.c_str()), 0);
m_sct_back.get_socket().bind(local_endpoint);
}
m_deadline.expires_from_now(boost::posix_time::milliseconds(m_connect_timeout));
boost::system::error_code ec = boost::asio::error::would_block;
//m_sct_back.get_socket().connect(remote_endpoint);
m_sct_back.get_socket().async_connect(remote_endpoint, boost::lambda::var(ec) = boost::lambda::_1);
while (ec == boost::asio::error::would_block)
{
m_io_service.run_one();
}
if (!ec && m_sct_back.get_socket().is_open())
{
m_sct_back.on_after_connect();
m_connected = true;
m_deadline.expires_at(boost::posix_time::pos_infin);
LOG_PRINT_L1("Connected OK: " << addr << ":" << port);
return true;
}
else
{
LOG_PRINT("Error on connect to " << addr << ":" << port << ", message: " << ec.message(), LOG_LEVEL_3);
return false;
}
}
catch (const boost::system::system_error& er)
{
LOG_PRINT("Some problems at connect, message: " << er.what(), LOG_LEVEL_4);
return false;
}
catch (...)
{
LOG_PRINT("Some fatal problems.", LOG_LEVEL_4);
return false;
}
return true;
}
inline
bool disconnect()
{
try
{
if (m_connected)
{
m_connected = false;
m_sct_back.get_socket().shutdown(boost::asio::ip::tcp::socket::shutdown_both);
}
}
catch (const boost::system::system_error& /*er*/)
{
//LOG_ERROR("Some problems at disconnect, message: " << er.what());
return false;
}
catch (...)
{
//LOG_ERROR("Some fatal problems.");
return false;
}
return true;
}
inline
bool send(const std::string& buff)
{
try
{
m_deadline.expires_from_now(boost::posix_time::milliseconds(m_reciev_timeout));
// Set up the variable that receives the result of the asynchronous
// operation. The error code is set to would_block to signal that the
// operation is incomplete. Asio guarantees that its asynchronous
// operations will never fail with would_block, so any other value in
// ec indicates completion.
boost::system::error_code ec = boost::asio::error::would_block;
// Start the asynchronous operation itself. The boost::lambda function
// object is used as a callback and will update the ec variable when the
// operation completes. The blocking_udp_client.cpp example shows how you
// can use boost::bind rather than boost::lambda.
boost::asio::async_write(m_sct_back.get_stream(), boost::asio::buffer(buff), boost::lambda::var(ec) = boost::lambda::_1);
// Block until the asynchronous operation has completed.
while (ec == boost::asio::error::would_block)
{
m_io_service.run_one();
}
if (ec)
{
LOG_PRINT_L3("Problems at write: " << ec.message());
m_connected = false;
return false;
}
else
{
m_deadline.expires_at(boost::posix_time::pos_infin);
}
}
catch (const boost::system::system_error& er)
{
LOG_ERROR("Some problems at connect, message: " << er.what());
return false;
}
catch (...)
{
LOG_ERROR("Some fatal problems.");
return false;
}
return true;
}
inline
bool send(const void* data, size_t sz)
{
try
{
/*
m_deadline.expires_from_now(boost::posix_time::milliseconds(m_reciev_timeout));
// Set up the variable that receives the result of the asynchronous
// operation. The error code is set to would_block to signal that the
// operation is incomplete. Asio guarantees that its asynchronous
// operations will never fail with would_block, so any other value in
// ec indicates completion.
boost::system::error_code ec = boost::asio::error::would_block;
// Start the asynchronous operation itself. The boost::lambda function
// object is used as a callback and will update the ec variable when the
// operation completes. The blocking_udp_client.cpp example shows how you
// can use boost::bind rather than boost::lambda.
boost::asio::async_write(m_sct_back.get_socket(), boost::asio::buffer(data, sz), boost::lambda::var(ec) = boost::lambda::_1);
// Block until the asynchronous operation has completed.
while (ec == boost::asio::error::would_block)
{
m_io_service.run_one();
}
*/
boost::system::error_code ec;
size_t writen = m_sct_back.get_stream().write_some(boost::asio::buffer(data, sz), ec);
if (!writen || ec)
{
LOG_PRINT_L3("Problems at write: " << ec.message());
m_connected = false;
return false;
}
else
{
m_deadline.expires_at(boost::posix_time::pos_infin);
}
}
catch (const boost::system::system_error& er)
{
LOG_ERROR("Some problems at send, message: " << er.what());
m_connected = false;
return false;
}
catch (...)
{
LOG_ERROR("Some fatal problems.");
return false;
}
return true;
}
bool is_connected()
{
return m_connected && m_sct_back.get_socket().is_open();
//TRY_ENTRY()
//return m_socket.is_open();
//CATCH_ENTRY_L0("is_connected", false)
}
inline
bool recv(std::string& buff)
{
try
{
// Set a deadline for the asynchronous operation. Since this function uses
// a composed operation (async_read_until), the deadline applies to the
// entire operation, rather than individual reads from the socket.
m_deadline.expires_from_now(boost::posix_time::milliseconds(m_reciev_timeout));
// Set up the variable that receives the result of the asynchronous
// operation. The error code is set to would_block to signal that the
// operation is incomplete. Asio guarantees that its asynchronous
// operations will never fail with would_block, so any other value in
// ec indicates completion.
//boost::system::error_code ec = boost::asio::error::would_block;
// Start the asynchronous operation itself. The boost::lambda function
// object is used as a callback and will update the ec variable when the
// operation completes. The blocking_udp_client.cpp example shows how you
// can use boost::bind rather than boost::lambda.
boost::system::error_code ec = boost::asio::error::would_block;
size_t bytes_transfered = 0;
handler_obj hndlr(ec, bytes_transfered);
char local_buff[10000] = { 0 };
//m_socket.async_read_some(boost::asio::buffer(local_buff, sizeof(local_buff)), hndlr);
boost::asio::async_read(m_sct_back.get_stream(), boost::asio::buffer(local_buff, sizeof(local_buff)), boost::asio::transfer_at_least(1), hndlr);
// Block until the asynchronous operation has completed.
while (ec == boost::asio::error::would_block && !boost::interprocess::ipcdetail::atomic_read32(&m_shutdowned))
{
m_io_service.run_one();
}
if (ec)
{
LOG_PRINT_L4("READ ENDS: Connection err_code " << ec.value());
if (ec == boost::asio::error::eof)
{
LOG_PRINT_L4("Connection err_code eof.");
//connection closed there, empty
return true;
}
LOG_PRINT_L3("Problems at read: " << ec.message());
m_connected = false;
return false;
}
else
{
LOG_PRINT_L4("READ ENDS: Success. bytes_tr: " << bytes_transfered);
m_deadline.expires_at(boost::posix_time::pos_infin);
}
/*if(!bytes_transfered)
return false;*/
buff.assign(local_buff, bytes_transfered);
return true;
}
catch (const boost::system::system_error& er)
{
LOG_ERROR("Some problems at read, message: " << er.what());
m_connected = false;
return false;
}
catch (...)
{
LOG_ERROR("Some fatal problems at read.");
return false;
}
return false;
}
inline bool recv_n(std::string& buff, int64_t sz)
{
try
{
// Set a deadline for the asynchronous operation. Since this function uses
// a composed operation (async_read_until), the deadline applies to the
// entire operation, rather than individual reads from the socket.
m_deadline.expires_from_now(boost::posix_time::milliseconds(m_reciev_timeout));
// Set up the variable that receives the result of the asynchronous
// operation. The error code is set to would_block to signal that the
// operation is incomplete. Asio guarantees that its asynchronous
// operations will never fail with would_block, so any other value in
// ec indicates completion.
//boost::system::error_code ec = boost::asio::error::would_block;
// Start the asynchronous operation itself. The boost::lambda function
// object is used as a callback and will update the ec variable when the
// operation completes. The blocking_udp_client.cpp example shows how you
// can use boost::bind rather than boost::lambda.
buff.resize(static_cast<size_t>(sz));
boost::system::error_code ec = boost::asio::error::would_block;
size_t bytes_transfered = 0;
handler_obj hndlr(ec, bytes_transfered);
//char local_buff[10000] = {0};
boost::asio::async_read(m_sct_back.get_stream(), boost::asio::buffer((char*)buff.data(), buff.size()), boost::asio::transfer_at_least(buff.size()), hndlr);
// Block until the asynchronous operation has completed.
while (ec == boost::asio::error::would_block && !boost::interprocess::ipcdetail::atomic_read32(&m_shutdowned))
{
m_io_service.run_one();
}
if (ec)
{
LOG_PRINT_L3("Problems at read: " << ec.message());
m_connected = false;
return false;
}
else
{
m_deadline.expires_at(boost::posix_time::pos_infin);
}
if (bytes_transfered != buff.size())
{
LOG_ERROR("Transferred missmatch with transfer_at_least value: m_bytes_transferred=" << bytes_transfered << " at_least value=" << buff.size());
return false;
}
return true;
}
catch (const boost::system::system_error& er)
{
LOG_ERROR("Some problems at read, message: " << er.what());
m_connected = false;
return false;
}
catch (...)
{
LOG_ERROR("Some fatal problems at read.");
return false;
}
return false;
}
bool shutdown()
{
m_deadline.cancel();
boost::system::error_code ignored_ec;
m_sct_back.get_socket().cancel(ignored_ec);
m_sct_back.get_socket().shutdown(boost::asio::ip::tcp::socket::shutdown_both, ignored_ec);
m_sct_back.get_socket().close(ignored_ec);
boost::interprocess::ipcdetail::atomic_write32(&m_shutdowned, 1);
m_connected = false;
return true;
}
void set_connected(bool connected)
{
m_connected = connected;
}
boost::asio::io_service& get_io_service()
{
return m_io_service;
}
boost::asio::ip::tcp::socket& get_socket()
{
return m_sct_back.get_socket();
}
private:
void check_deadline()
{
// Check whether the deadline has passed. We compare the deadline against
// the current time since a new asynchronous operation may have moved the
// deadline before this actor had a chance to run.
if (m_deadline.expires_at() <= boost::asio::deadline_timer::traits_type::now())
{
// The deadline has passed. The socket is closed so that any outstanding
// asynchronous operations are cancelled. This allows the blocked
// connect(), read_line() or write_line() functions to return.
LOG_PRINT_L2("Timed out socket");
m_connected = false;
m_sct_back.get_socket().close();
// There is no longer an active deadline. The expiry is set to positive
// infinity so that the actor takes no action until a new deadline is set.
m_deadline.expires_at(boost::posix_time::pos_infin);
}
// Put the actor back to sleep.
m_deadline.async_wait(boost::bind(&blocked_mode_client_t<is_ssl>::check_deadline, this));
}
protected:
boost::asio::io_service m_io_service;
socket_backend_resetable<is_ssl> m_sct_back;//socket_backend<is_ssl> m_sct_back;
int m_connect_timeout;
int m_reciev_timeout;
bool m_initialized;
bool m_connected;
boost::asio::deadline_timer m_deadline;
volatile uint32_t m_shutdowned;
};
/************************************************************************/
/* */
/************************************************************************/
template<bool is_ssl>
class async_blocked_mode_client_t : public blocked_mode_client_t<is_ssl>
{
public:
async_blocked_mode_client_t() :m_send_deadline(blocked_mode_client_t<is_ssl>::m_io_service)
{
// No deadline is required until the first socket operation is started. We
// set the deadline to positive infinity so that the actor takes no action
// until a specific deadline is set.
m_send_deadline.expires_at(boost::posix_time::pos_infin);
// Start the persistent actor that checks for deadline expiry.
check_send_deadline();
}
~async_blocked_mode_client_t()
{
m_send_deadline.cancel();
}
bool shutdown()
{
blocked_mode_client_t<is_ssl>::shutdown();
m_send_deadline.cancel();
return true;
}
inline
bool send(const void* data, size_t sz)
{
try
{
/*
m_send_deadline.expires_from_now(boost::posix_time::milliseconds(m_reciev_timeout));
// Set up the variable that receives the result of the asynchronous
// operation. The error code is set to would_block to signal that the
// operation is incomplete. Asio guarantees that its asynchronous
// operations will never fail with would_block, so any other value in
// ec indicates completion.
boost::system::error_code ec = boost::asio::error::would_block;
// Start the asynchronous operation itself. The boost::lambda function
// object is used as a callback and will update the ec variable when the
// operation completes. The blocking_udp_client.cpp example shows how you
// can use boost::bind rather than boost::lambda.
boost::asio::async_write(m_socket, boost::asio::buffer(data, sz), boost::lambda::var(ec) = boost::lambda::_1);
// Block until the asynchronous operation has completed.
while(ec == boost::asio::error::would_block)
{
m_io_service.run_one();
}*/
boost::system::error_code ec;
size_t writen = blocked_mode_client_t<is_ssl>::m_sct_back.get_socket().write_some(boost::asio::buffer(data, sz), ec);
if (!writen || ec)
{
LOG_PRINT_L3("Problems at write: " << ec.message());
return false;
}
else
{
m_send_deadline.expires_at(boost::posix_time::pos_infin);
}
}
catch (const boost::system::system_error& er)
{
LOG_ERROR("Some problems at connect, message: " << er.what());
return false;
}
catch (...)
{
LOG_ERROR("Some fatal problems.");
return false;
}
return true;
}
private:
boost::asio::deadline_timer m_send_deadline;
void check_send_deadline()
{
// Check whether the deadline has passed. We compare the deadline against
// the current time since a new asynchronous operation may have moved the
// deadline before this actor had a chance to run.
if (m_send_deadline.expires_at() <= boost::asio::deadline_timer::traits_type::now())
{
// The deadline has passed. The socket is closed so that any outstanding
// asynchronous operations are cancelled. This allows the blocked
// connect(), read_line() or write_line() functions to return.
LOG_PRINT_L3("Timed out socket");
blocked_mode_client_t<is_ssl>::m_sct_back.get_socket().close();
// There is no longer an active deadline. The expiry is set to positive
// infinity so that the actor takes no action until a new deadline is set.
m_send_deadline.expires_at(boost::posix_time::pos_infin);
}
// Put the actor back to sleep.
m_send_deadline.async_wait(boost::bind(&async_blocked_mode_client_t<is_ssl>::check_send_deadline, this));
}
};
typedef blocked_mode_client_t<false> blocked_mode_client;
typedef async_blocked_mode_client_t<false> async_blocked_mode_client;
}
}