1
0
Fork 0
forked from lthn/blockchain
blockchain/tests/functional_tests/L2S.h
2021-02-15 15:44:11 +03:00

1344 lines
40 KiB
C++

// Copyright (c) 2020-2021 Zano Project (https://zano.org/)
// Copyright (c) 2020-2021 Locksmith (acmxddk@gmail.com)
// Copyright (c) 2020-2021 sowle (val@zano.org, crypto.sowle@gmail.com)
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#pragma once
//
// This file contains the implementation of L2S membership proof protocol
// and a linkable ring signature scheme based on it.
//
point_t ml2s_rsum_impl(size_t n, size_t N, std::vector<point_t>::const_iterator X_array_bg_it, const std::vector<scalar_t>& c1_array,
const std::vector<scalar_t>& c3_array, const scalar_t& cn)
{
if (n == 1)
return *X_array_bg_it + cn * *(X_array_bg_it + 1);
// n >= 2, N >= 4
return ml2s_rsum_impl(n - 1, N / 2, X_array_bg_it, c1_array, c3_array, c1_array[n - 2]) +
cn * ml2s_rsum_impl(n - 1, N / 2, X_array_bg_it + N / 2, c1_array, c3_array, c3_array[n - 2]);
}
bool ml2s_rsum(size_t n, const std::vector<point_t>& X_array, const std::vector<scalar_t>& c1_array,
const std::vector<scalar_t>& c3_array, point_t& result)
{
size_t N = (size_t)1 << n;
CHECK_AND_ASSERT_MES(n != 0, false, "n == 0");
CHECK_AND_ASSERT_MES(N == X_array.size(), false, "|X_array| != N, " << X_array.size() << ", " << N);
CHECK_AND_ASSERT_MES(c1_array.size() == n, false, "|c1_array| != n, " << c1_array.size() << ", " << n);
CHECK_AND_ASSERT_MES(c3_array.size() == n - 1, false, "|c3_array| != n - 1, " << c3_array.size() << ", " << n - 1);
result = ml2s_rsum_impl(n, N, X_array.begin(), c1_array, c3_array, c1_array[n - 1]);
return true;
}
struct ml2s_signature_element
{
point_t Z0;
point_t T0;
scalar_t t0;
point_t Z;
std::vector<scalar_t> r_array; // size = n
std::vector<point_t> H_array; // size = n
point_t T;
scalar_t t;
};
struct ml2s_signature
{
scalar_t z;
std::vector<ml2s_signature_element> elements; // size = L
};
size_t log2sz(size_t x)
{
size_t r = 0;
while (x > 1)
x >>= 1, ++r;
return r;
}
template<typename T>
T invert_last_bit(T v)
{
return v ^ 1;
}
template<typename T>
bool is_power_of_2(T v)
{
while (v > 1)
{
if (v & 1)
return false;
v <<= 1;
}
return true;
}
bool ml2s_lnk_sig_gen(const scalar_t& m, const std::vector<point_t>& B_array, const std::vector<scalar_t>& b_array, const std::vector<size_t>& s_array, ml2s_signature& signature, uint8_t* p_err = nullptr)
{
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
if (!(cond)) { LOG_PRINT_RED("ml2s_lnk_sig_gen: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
if (p_err) *p_err = err_code; return false; }
#ifndef NDEBUG
# define DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) CHECK_AND_ASSERT_MES_CUSTOM(cond, false, if (p_err) *p_err = err_code, "ml2s_lnk_sig_gen check failed: " << #cond)
#else
# define DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code)
#endif
// check boundaries
size_t L = b_array.size();
size_t N = 2 * B_array.size();
size_t n = log2sz(N);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(s_array.size() == L, 0);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(1ull << n == N, 1);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(L > 0, 2);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(L <= N / 2, 3);
// initialize signature
signature.elements.resize(L);
for (size_t i = 0; i < L; ++i)
{
signature.elements[i].H_array.resize(n);
signature.elements[i].r_array.resize(n);
}
std::vector<scalar_t> b_inv_array;
b_inv_array.reserve(L);
for (size_t i = 0; i < L; ++i)
b_inv_array.emplace_back(b_array[i].reciprocal());
std::vector<point_t> I_array;
I_array.reserve(L);
for (size_t i = 0; i < L; ++i)
I_array.emplace_back(b_inv_array[i] * hash_helper_t::hp(b_array[i] * c_point_G));
signature.z = hash_helper_t::hs(m, B_array, I_array);
const scalar_t& z = signature.z;
auto hash_point_lambda = [&z](const point_t& point) { return point + z * hash_helper_t::hp(point); };
std::vector<point_t> A_array; // size == L
A_array.reserve(L);
for (size_t i = 0; i < L; ++i)
A_array.emplace_back(c_point_G + z * I_array[i]);
std::vector<point_t> P_array; // size == N // 2
P_array.reserve(B_array.size());
for (size_t i = 0; i < B_array.size(); ++i)
P_array.emplace_back(hash_point_lambda(B_array[i]));
point_t Q_shift = hash_helper_t::hs(A_array, P_array) * c_point_G;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(P_array.size() * 2 == N, 4);
std::vector<point_t> X_array(N);
// X_array = { P_array[0], Q_array[0], P_array[1], Q_array[1], etc. }
for (size_t i = 0; i < N; ++i)
{
if (i % 2 == 0)
X_array[i] = P_array[i / 2];
else
X_array[i] = hash_point_lambda(Q_shift + B_array[i / 2]);
}
for (size_t i = 0; i < L; ++i)
{
size_t s_idx = s_array[i];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(s_idx < B_array.size() && 2 * s_idx + 1 < X_array.size(), 5);
point_t Ap = b_inv_array[i] * X_array[2 * s_idx];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(Ap == A_array[i], 6);
}
///
struct intermediate_element_t
{
scalar_t f;
scalar_t k0;
scalar_t q;
size_t M_cnt;
size_t z;
size_t h;
scalar_t a;
scalar_t x;
std::vector<point_t> Y_array;
};
std::vector<intermediate_element_t> interms(L);
// challenge c0
scalar_t e = hash_helper_t::hs(z);
hash_helper_t::hs_t hsc;
hsc.add_scalar(e);
hsc.add_points_array(X_array);
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
sel.Z0 = A_array[i]; // b_inv_array[i] * X_array[2 * s_array[i]] + 0 * X_array[2 * s + 1], as k1 == 0 always
interm.f.make_random();
sel.Z = interm.f * sel.Z0;
interm.k0 = interm.f * b_inv_array[i];
interm.q.make_random();
sel.T0 = interm.q * sel.Z0;
hsc.add_point(sel.Z0);
hsc.add_point(sel.T0);
hsc.add_point(sel.Z);
}
scalar_t c0 = hsc.calc_hash();
// challenges c11, c13
hsc.add_scalar(c0);
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
sel.t0 = interm.q - interm.f * c0;
interm.M_cnt = N;
interm.z = 2 * s_array[i];
interm.h = 2 * s_array[i] + 1; // we already checked s_array elements against X_array.size() above
interm.a = 1;
interm.q.make_random(); // new q
interm.Y_array = X_array;
sel.H_array[0] = interm.k0 / interm.q * X_array[interm.h]; // H1
hsc.add_scalar(sel.t0);
hsc.add_point(sel.H_array[0]);
}
// challenges c11, c13
#ifndef NDEBUG
// these vectors are only needed for self-check in the end
std::vector<scalar_t> c1_array(n); // counting from 0, so c11 is c1_array[0], will have n elements
std::vector<scalar_t> c3_array(n-1); // the same, will have n - 1 elements
#endif
scalar_t ci1 = hsc.calc_hash();
scalar_t ci3 = hash_helper_t::hs(ci1);
// ci1, ci3 for i in [2; n] -- corresponds c1_array for i in [1; n - 1], c3_array for i in [1; n - 2]
for (size_t idx_n = 0; idx_n < n - 1; ++idx_n)
{
#ifndef NDEBUG
c1_array[idx_n] = ci1;
c3_array[idx_n] = ci3;
#endif
std::vector<const scalar_t*> c_array = { &c_scalar_1, &ci1, &c_scalar_1, &ci3 };
hsc.add_scalar(ci1);
for (size_t idx_L = 0; idx_L < L; ++idx_L)
{
auto& interm = interms[idx_L];
auto& sel = signature.elements[idx_L];
const scalar_t& e_local = *c_array[interm.z % 4];
const scalar_t& g_local = *c_array[interm.h % 4];
sel.r_array[idx_n] = interm.q * g_local / e_local; // r_i
interm.a *= e_local;
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(is_power_of_2(interm.M_cnt), 200);
interm.M_cnt = interm.M_cnt / 2;
// TODO: check M_scalar is power of 2
for (size_t j = 0; j < interm.M_cnt; ++j)
interm.Y_array[j] = (interm.Y_array[2 * j] + *c_array[(2 * j + 1) % 4] * interm.Y_array[2 * j + 1]) / e_local;
interm.z /= 2;
interm.h = invert_last_bit(interm.z);
interm.q.make_random();
sel.H_array[idx_n + 1] = interm.k0 / interm.q * interm.Y_array[interm.h]; // H_{i+1}
hsc.add_scalar(sel.r_array[idx_n]);
hsc.add_point(sel.H_array[idx_n + 1]);
}
ci1 = hsc.calc_hash();
ci3 = hash_helper_t::hs(ci1);
}
// challenge cn
#ifndef NDEBUG
c1_array[n - 1] = ci1;
#endif
// challenge c
hsc.add_scalar(ci1);
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE((interm.z == 0 && interm.h == 1) || (interm.z == 1 && interm.h == 0), 7);
const scalar_t& e_local = interm.z == 0 ? c_scalar_1 : ci1;
const scalar_t& g_local = interm.z == 0 ? ci1 : c_scalar_1;
sel.r_array[n - 1] = interm.q * g_local / e_local; // r_n
interm.a *= e_local;
interm.x = interm.a / interm.k0;
interm.q.make_random(); // qn
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.k0 * X_array[2 * s_array[i]] == sel.Z, 201);
point_t W = sel.Z;
for (size_t j = 0; j < n; ++j)
W = W + sel.r_array[j] * sel.H_array[j];
sel.T = interm.q * W;
hsc.add_scalar(sel.r_array[n - 1]);
hsc.add_point(sel.T);
}
scalar_t c = hsc.calc_hash();
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
sel.t = interm.q - interm.x * c;
}
// L2S signature is complete
#ifndef NDEBUG
// self-check
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
point_t W = sel.Z;
for (size_t j = 0; j < n; ++j)
W = W + sel.r_array[j] * sel.H_array[j];
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.T == interm.q * W, 230);
point_t R;
R.zero();
bool r = ml2s_rsum(n, X_array, c1_array, c3_array, R);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(r, 231);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(R == interm.x * W, 232);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t == interm.q - interm.x * c, 233);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t * W + c * R == sel.T, 234);
}
#endif // #ifndef NDEBUG
return true;
#undef DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
} // ml2s_lnk_sig_gen
bool ml2s_lnk_sig_verif(const scalar_t& m, const std::vector<point_t>& B_array, const ml2s_signature& signature, uint8_t* p_err = nullptr,
std::vector<point_t>* p_I_array = nullptr)
{
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
if (!(cond)) { LOG_PRINT_RED("ml2s_lnk_sig_verif: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
if (p_err) *p_err = err_code; return false; }
auto hash_point_lambda = [&signature](const point_t& point) { return point + signature.z * hash_helper_t::hp(point); };
size_t L = signature.elements.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(L > 0, 0);
size_t n = signature.elements[0].r_array.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(n < 32, 4);
size_t N = (size_t)1 << n;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(B_array.size() == N / 2, 5);
std::vector<point_t> local_I_array;
if (p_I_array == nullptr)
p_I_array = &local_I_array;
p_I_array->resize(L);
std::vector<point_t> A_array(L);
for (size_t i = 0; i < L; ++i)
{
(*p_I_array)[i] = (signature.elements[i].Z0 - c_point_G) / signature.z;
A_array[i] = signature.elements[i].Z0;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(signature.elements[i].r_array.size() == n, 1);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(signature.elements[i].H_array.size() == n, 2);
}
scalar_t z_ = hash_helper_t::hs(m, B_array, *p_I_array);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(z_ == signature.z, 3);
scalar_t e = hash_helper_t::hs(signature.z);
std::vector<point_t> P_array(B_array.size());
for (size_t i = 0; i < B_array.size(); ++i)
P_array[i] = hash_point_lambda(B_array[i]);
point_t Q_shift = hash_helper_t::hs(A_array, P_array) * c_point_G;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(P_array.size() * 2 == N, 6);
std::vector<point_t> X_array(N);
// X_array = { P_array[0], Q_array[0], P_array[1], Q_array[1], etc. }
for (size_t i = 0; i < N; ++i)
{
if (i % 2 == 0)
X_array[i] = P_array[i / 2];
else
X_array[i] = hash_point_lambda(Q_shift + B_array[i / 2]);
}
// challenge c0
hash_helper_t::hs_t hs_calculator;
hs_calculator.reserve(1 + N + 3 * L);
hs_calculator.add_scalar(e);
hs_calculator.add_points_array(X_array);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hs_calculator.add_point(sel.Z0);
hs_calculator.add_point(sel.T0);
hs_calculator.add_point(sel.Z);
}
e = hs_calculator.calc_hash();
scalar_t c0 = e;
// check t0 * Z0 + c0 * Z == T0
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t0 * sel.Z0 + c0 * sel.Z == sel.T0, 7);
}
// challenges c11, c13
std::vector<scalar_t> c1_array; // counting from 0, so c11 is c1_array[0], will have n elements
std::vector<scalar_t> c3_array; // the same, will have n - 1 elements
hs_calculator.add_scalar(e);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hs_calculator.add_scalar(sel.t0);
hs_calculator.add_point(sel.H_array[0]);
}
e = hs_calculator.calc_hash();
c1_array.emplace_back(e);
c3_array.emplace_back(hash_helper_t::hs(e));
// ci1, ci3 for i in [2; n] -- corresponds c1_array for i in [1; n - 1], c3_array for i in [1; n - 2]
for (size_t i = 1; i < n; ++i)
{
hs_calculator.add_scalar(e);
for (size_t j = 0; j < L; ++j)
{
auto& sel = signature.elements[j];
hs_calculator.add_scalar(sel.r_array[i - 1]);
hs_calculator.add_point(sel.H_array[i]);
}
e = hs_calculator.calc_hash();
c1_array.emplace_back(e);
if (i != n - 1)
c3_array.emplace_back(hash_helper_t::hs(e));
}
// challenge c
hs_calculator.add_scalar(e);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hs_calculator.add_scalar(sel.r_array[n - 1]);
hs_calculator.add_point(sel.T);
}
scalar_t c = hs_calculator.calc_hash();
// Rsum
point_t R = c_point_G;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ml2s_rsum(n, X_array, c1_array, c3_array, R), 8);
// final checks
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
point_t S = sel.Z;
for (size_t j = 0; j < n; ++j)
{
S = S + sel.r_array[j] * sel.H_array[j];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(!S.is_zero(), 9);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.r_array[j] != 0, 10);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(!sel.H_array[j].is_zero(), 11);
}
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t * S + c * R == sel.T, 12);
}
return true;
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// v 2
////////////////////////////////////////////////////////////////////////////////////////////////////
struct ml2s_signature_element_v2
{
point_t T0;
scalar_t t0;
point_t Z;
std::vector<scalar_t> r_array; // size = n
std::vector<point_t> H_array; // size = n
point_t T;
scalar_t t;
};
struct ml2s_signature_v2
{
std::vector<ml2s_signature_element_v2> elements; // size = L
};
bool ml2s_lnk_sig_gen_v2(const scalar_t& m, const std::vector<point_t>& B_array, const std::vector<scalar_t>& b_array,
const std::vector<size_t>& s_array, const std::vector<point_t>& I_array, ml2s_signature_v2& signature, uint8_t* p_err = nullptr)
{
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
if (!(cond)) { LOG_PRINT_RED("ml2s_lnk_sig_gen: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
if (p_err) *p_err = err_code; return false; }
#ifndef NDEBUG
# define DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) CHECK_AND_ASSERT_MES_CUSTOM(cond, false, if (p_err) *p_err = err_code, "ml2s_lnk_sig_gen check failed: " << #cond)
#else
# define DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code)
#endif
// check boundaries
size_t L = b_array.size();
size_t N = 2 * B_array.size();
size_t n = log2sz(N);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(s_array.size() == L, 0);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(1ull << n == N, 1);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(L > 0, 2);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(L <= N / 2, 3);
// initialize signature
signature.elements.resize(L);
for (size_t i = 0; i < L; ++i)
{
signature.elements[i].H_array.resize(n);
signature.elements[i].r_array.resize(n);
}
std::vector<scalar_t> b_inv_array;
b_inv_array.reserve(L);
for (size_t i = 0; i < L; ++i)
b_inv_array.emplace_back(b_array[i].reciprocal());
const scalar_t z = hash_helper_t::hs(m, B_array, I_array);
auto hash_point_lambda = [&z](const point_t& point) { return point + z * hash_helper_t::hp(point); };
std::vector<point_t> A_array; // size == L
A_array.reserve(L);
for (size_t i = 0; i < L; ++i)
A_array.emplace_back(c_point_G + z * I_array[i]);
std::vector<point_t> P_array; // size == N // 2
P_array.reserve(B_array.size());
for (size_t i = 0; i < B_array.size(); ++i)
P_array.emplace_back(hash_point_lambda(B_array[i]));
point_t I_sum;
I_sum.zero();
for (size_t i = 0; i < L; ++i)
I_sum = I_sum + I_array[i];
point_t Q_shift = hash_helper_t::hp(I_sum);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(P_array.size() * 2 == N, 4);
std::vector<point_t> X_array(N);
// X_array = { P_array[0], Q_array[0], P_array[1], Q_array[1], etc. }
for (size_t i = 0; i < N; ++i)
{
if (i % 2 == 0)
X_array[i] = P_array[i / 2];
else
X_array[i] = hash_point_lambda(Q_shift + B_array[i / 2]);
}
for (size_t i = 0; i < L; ++i)
{
size_t s_idx = s_array[i];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(s_idx < B_array.size() && 2 * s_idx + 1 < X_array.size(), 5);
point_t Ap = b_inv_array[i] * X_array[2 * s_idx];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(Ap == A_array[i], 6);
}
///
struct intermediate_element_t
{
scalar_t f;
scalar_t k0;
scalar_t q;
size_t M_cnt;
size_t z;
size_t h;
scalar_t a;
scalar_t x;
std::vector<point_t> Y_array;
};
std::vector<intermediate_element_t> interms(L);
// challenge c0
scalar_t e = hash_helper_t::hs(z);
hash_helper_t::hs_t hsc;
hsc.add_scalar(e);
hsc.add_points_array(X_array);
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
const point_t& Z0 = A_array[i]; // b_inv_array[i] * X_array[2 * s_array[i]] + 0 * X_array[2 * s + 1], as k1 == 0 always
interm.f.make_random();
sel.Z = interm.f * Z0;
interm.k0 = interm.f * b_inv_array[i];
interm.q.make_random();
sel.T0 = interm.q * Z0;
hsc.add_point(sel.T0);
hsc.add_point(sel.Z);
}
scalar_t c0 = hsc.calc_hash();
// challenges c11, c13
hsc.add_scalar(c0);
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
sel.t0 = interm.q - interm.f * c0;
interm.M_cnt = N;
interm.z = 2 * s_array[i];
interm.h = 2 * s_array[i] + 1; // we already checked s_array elements against X_array.size() above
interm.a = 1;
interm.q.make_random(); // new q
interm.Y_array = X_array;
sel.H_array[0] = interm.k0 / interm.q * X_array[interm.h]; // H1
hsc.add_scalar(sel.t0);
hsc.add_point(sel.H_array[0]);
}
// challenges c11, c13
#ifndef NDEBUG
// these vectors are only needed for self-check in the end
std::vector<scalar_t> c1_array(n); // counting from 0, so c11 is c1_array[0], will have n elements
std::vector<scalar_t> c3_array(n - 1); // the same, will have n - 1 elements
#endif
scalar_t ci1 = hsc.calc_hash();
scalar_t ci3 = hash_helper_t::hs(ci1);
// ci1, ci3 for i in [2; n] -- corresponds c1_array for i in [1; n - 1], c3_array for i in [1; n - 2]
for (size_t idx_n = 0; idx_n < n - 1; ++idx_n)
{
#ifndef NDEBUG
c1_array[idx_n] = ci1;
c3_array[idx_n] = ci3;
#endif
std::vector<const scalar_t*> c_array = { &c_scalar_1, &ci1, &c_scalar_1, &ci3 };
hsc.add_scalar(ci1);
for (size_t idx_L = 0; idx_L < L; ++idx_L)
{
auto& interm = interms[idx_L];
auto& sel = signature.elements[idx_L];
const scalar_t& e_local = *c_array[interm.z % 4];
const scalar_t& g_local = *c_array[interm.h % 4];
sel.r_array[idx_n] = interm.q * g_local / e_local; // r_i
interm.a *= e_local;
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(is_power_of_2(interm.M_cnt), 200);
interm.M_cnt = interm.M_cnt / 2;
// TODO: check M_scalar is power of 2
for (size_t j = 0; j < interm.M_cnt; ++j)
interm.Y_array[j] = (interm.Y_array[2 * j] + *c_array[(2 * j + 1) % 4] * interm.Y_array[2 * j + 1]) / e_local;
interm.z /= 2;
interm.h = invert_last_bit(interm.z);
interm.q.make_random();
sel.H_array[idx_n + 1] = interm.k0 / interm.q * interm.Y_array[interm.h]; // H_{i+1}
hsc.add_scalar(sel.r_array[idx_n]);
hsc.add_point(sel.H_array[idx_n + 1]);
}
ci1 = hsc.calc_hash();
ci3 = hash_helper_t::hs(ci1);
}
// challenge cn
#ifndef NDEBUG
c1_array[n - 1] = ci1;
#endif
// challenge c
hsc.add_scalar(ci1);
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE((interm.z == 0 && interm.h == 1) || (interm.z == 1 && interm.h == 0), 7);
const scalar_t& e_local = interm.z == 0 ? c_scalar_1 : ci1;
const scalar_t& g_local = interm.z == 0 ? ci1 : c_scalar_1;
sel.r_array[n - 1] = interm.q * g_local / e_local; // r_n
interm.a *= e_local;
interm.x = interm.a / interm.k0;
interm.q.make_random(); // qn
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.k0 * X_array[2 * s_array[i]] == sel.Z, 201);
point_t W = sel.Z;
for (size_t j = 0; j < n; ++j)
W = W + sel.r_array[j] * sel.H_array[j];
sel.T = interm.q * W;
hsc.add_scalar(sel.r_array[n - 1]);
hsc.add_point(sel.T);
}
scalar_t c = hsc.calc_hash();
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
sel.t = interm.q - interm.x * c;
}
// L2S signature is complete
#ifndef NDEBUG
// self-check
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
point_t W = sel.Z;
for (size_t j = 0; j < n; ++j)
W = W + sel.r_array[j] * sel.H_array[j];
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.T == interm.q * W, 230);
point_t R;
R.zero();
bool r = ml2s_rsum(n, X_array, c1_array, c3_array, R);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(r, 231);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(R == interm.x * W, 232);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t == interm.q - interm.x * c, 233);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t * W + c * R == sel.T, 234);
}
#endif // #ifndef NDEBUG
return true;
#undef DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
} // ml2s_lnk_sig_gen
bool ml2s_lnk_sig_verif_v2(const scalar_t& m, const std::vector<point_t>& B_array, std::vector<point_t>& I_array,
const ml2s_signature_v2& signature, uint8_t* p_err = nullptr)
{
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
if (!(cond)) { LOG_PRINT_RED("ml2s_lnk_sig_verif: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
if (p_err) *p_err = err_code; return false; }
size_t L = signature.elements.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(L > 0, 0);
size_t n = signature.elements[0].r_array.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(n < 32, 4);
size_t N = (size_t)1 << n;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(B_array.size() == N / 2, 5);
const scalar_t z = hash_helper_t::hs(m, B_array, I_array);
auto hash_point_lambda = [&z](const point_t& point) { return point + z * hash_helper_t::hp(point); };
std::vector<point_t> A_array;
A_array.resize(L);
for (size_t i = 0; i < L; ++i)
{
A_array[i] = I_array[i].mul_plus_G(z); // = c_point_G + z * I_array[i];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(signature.elements[i].r_array.size() == n, 1);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(signature.elements[i].H_array.size() == n, 2);
}
scalar_t e = hash_helper_t::hs(z);
point_t I_sum;
I_sum.zero();
for (size_t i = 0; i < L; ++i)
I_sum = I_sum + I_array[i];
point_t Q_shift = hash_helper_t::hp(I_sum);
std::vector<point_t> X_array(N);
for (size_t i = 0; i < N; i += 2)
X_array[i] = B_array[i / 2] + z * hash_helper_t::hp(B_array[i / 2]);
for (size_t i = 1; i < N; i += 2)
X_array[i] = hash_point_lambda(Q_shift + B_array[i / 2]);
// challenge c0
hash_helper_t::hs_t hsc;
hsc.reserve(1 + N + 3 * L);
hsc.add_scalar(e);
hsc.add_points_array(X_array);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hsc.add_point(sel.T0);
hsc.add_point(sel.Z);
}
e = hsc.calc_hash();
scalar_t c0 = e;
// check t0 * Z0 + c0 * Z == T0
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t0 * A_array[i] + c0 * sel.Z == sel.T0, 7);
}
// challenges c11, c13
std::vector<scalar_t> c1_array; // counting from 0, so c11 is c1_array[0], will have n elements
std::vector<scalar_t> c3_array; // the same, will have n - 1 elements
hsc.add_scalar(e);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hsc.add_scalar(sel.t0);
hsc.add_point(sel.H_array[0]);
}
e = hsc.calc_hash();
c1_array.emplace_back(e);
c3_array.emplace_back(hash_helper_t::hs(e));
// ci1, ci3 for i in [2; n] -- corresponds c1_array for i in [1; n - 1], c3_array for i in [1; n - 2]
for (size_t i = 1; i < n; ++i)
{
hsc.add_scalar(e);
for (size_t j = 0; j < L; ++j)
{
auto& sel = signature.elements[j];
hsc.add_scalar(sel.r_array[i - 1]);
hsc.add_point(sel.H_array[i]);
}
e = hsc.calc_hash();
c1_array.emplace_back(e);
if (i != n - 1)
c3_array.emplace_back(hash_helper_t::hs(e));
}
// challenge c
hsc.add_scalar(e);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hsc.add_scalar(sel.r_array[n - 1]);
hsc.add_point(sel.T);
}
scalar_t c = hsc.calc_hash();
// Rsum
point_t R = c_point_G;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ml2s_rsum(n, X_array, c1_array, c3_array, R), 8);
point_t cR = c * R;
// final checks
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
point_t S = sel.Z;
for (size_t j = 0; j < n; ++j)
{
S = S + sel.r_array[j] * sel.H_array[j];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(!S.is_zero(), 9);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.r_array[j] != 0, 10);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(!sel.H_array[j].is_zero(), 11);
}
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t * S + cR == sel.T, 12);
}
return true;
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// v 3
////////////////////////////////////////////////////////////////////////////////////////////////////
struct ml2s_signature_element_v3
{
crypto::public_key T0;
crypto::secret_key t0;
crypto::public_key Z;
std::vector<crypto::secret_key> r_array; // size = n
std::vector<crypto::public_key> H_array; // size = n
crypto::public_key T;
crypto::secret_key t;
};
struct ml2s_signature_v3
{
std::vector<ml2s_signature_element_v3> elements; // size = L
};
bool ml2s_lnk_sig_gen_v3(const crypto::hash& m, const std::vector<crypto::public_key>& ring_pub_keys, const std::vector<crypto::secret_key>& sec_keys,
const std::vector<size_t>& ring_mapping, const std::vector<crypto::key_image>& key_images, ml2s_signature_v3& signature, uint8_t* p_err = nullptr)
{
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
if (!(cond)) { LOG_PRINT_RED("ml2s_lnk_sig_gen: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
if (p_err) *p_err = err_code; return false; }
#ifndef NDEBUG
# define DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) CHECK_AND_ASSERT_MES_CUSTOM(cond, false, if (p_err) *p_err = err_code, "ml2s_lnk_sig_gen check failed: " << #cond)
#else
# define DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code)
#endif
// check boundaries
size_t L = sec_keys.size();
size_t N = 2 * ring_pub_keys.size();
size_t n = log2sz(N);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ring_mapping.size() == L, 0);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(1ull << n == N, 1);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(L > 0, 2);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(L <= N / 2, 3);
// initialize signature
signature.elements.resize(L);
for (size_t i = 0; i < L; ++i)
{
signature.elements[i].H_array.resize(n);
signature.elements[i].r_array.resize(n);
}
std::vector<scalar_t> b_array(L);
std::vector<scalar_t> b_inv_array;
b_inv_array.reserve(L);
std::vector<point_t> I_array(L);
for (size_t i = 0; i < L; ++i)
{
b_array[i].from_secret_key(sec_keys[i]);
b_inv_array.emplace_back(b_array[i].reciprocal());
I_array[i].from_key_image(key_images[i]);
}
const scalar_t z = hash_helper_t::hs(m, ring_pub_keys, key_images);
auto hash_point_lambda = [&z](const point_t& point) { return point + z * hash_helper_t::hp(point); };
std::vector<point_t> A_array; // size == L
A_array.reserve(L);
for (size_t i = 0; i < L; ++i)
A_array.emplace_back(c_point_G + z * I_array[i]);
point_t I_sum;
I_sum.zero();
for (size_t i = 0; i < L; ++i)
I_sum = I_sum + I_array[i];
point_t Q_shift = hash_helper_t::hp(I_sum);
std::vector<point_t> B_array(ring_pub_keys.size());
for (size_t j = 0; j < ring_pub_keys.size(); ++j)
B_array[j].from_public_key(ring_pub_keys[j]);
std::vector<point_t> X_array(N);
for (size_t i = 0; i < N; i += 2)
X_array[i] = B_array[i / 2] + z * hash_helper_t::hp(ring_pub_keys[i / 2]);
for (size_t i = 1; i < N; i += 2)
X_array[i] = hash_point_lambda(Q_shift + B_array[i / 2]);
for (size_t i = 0; i < L; ++i)
{
size_t s_idx = ring_mapping[i];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(s_idx < B_array.size() && 2 * s_idx + 1 < X_array.size(), 5);
point_t Ap = b_inv_array[i] * X_array[2 * s_idx];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(Ap == A_array[i], 6);
}
///
struct intermediate_element_t
{
scalar_t f;
scalar_t k0;
scalar_t q;
size_t M_cnt;
size_t z;
size_t h;
scalar_t a;
scalar_t x;
std::vector<point_t> Y_array;
// unpacked signature points
point_t Z;
point_t T0;
std::vector<point_t> H_array;
point_t T;
};
std::vector<intermediate_element_t> interms(L);
// challenge c0
scalar_t e = hash_helper_t::hs(z);
hash_helper_t::hs_t hsc;
hsc.add_scalar(e);
hsc.add_points_array(X_array);
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
const point_t& Z0 = A_array[i]; // b_inv_array[i] * X_array[2 * s_array[i]] + 0 * X_array[2 * s + 1], as k1 == 0 always
interm.f.make_random();
interm.Z = interm.f * Z0;
sel.Z = interm.Z.to_public_key();
interm.k0 = interm.f * b_inv_array[i];
interm.q.make_random();
interm.T0 = interm.q * Z0;
sel.T0 = interm.T0.to_public_key();
hsc.add_pub_key(sel.T0);
hsc.add_pub_key(sel.Z);
}
scalar_t c0 = hsc.calc_hash();
// challenges c11, c13
hsc.add_scalar(c0);
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
sel.t0 = interm.q - interm.f * c0;
interm.M_cnt = N;
interm.z = 2 * ring_mapping[i];
interm.h = 2 * ring_mapping[i] + 1; // we already checked s_array elements against X_array.size() above
interm.a = 1;
interm.q.make_random(); // new q
interm.Y_array = X_array;
interm.H_array.resize(n);
interm.H_array[0] = interm.k0 / interm.q * X_array[interm.h]; // H1
sel.H_array[0] = interm.H_array[0].to_public_key();
hsc.add_scalar(sel.t0);
hsc.add_pub_key(sel.H_array[0]);
}
// challenges c11, c13
#ifndef NDEBUG
// these vectors are only needed for self-check in the end
std::vector<scalar_t> c1_array(n); // counting from 0, so c11 is c1_array[0], will have n elements
std::vector<scalar_t> c3_array(n - 1); // the same, will have n - 1 elements
#endif
scalar_t ci1 = hsc.calc_hash();
scalar_t ci3 = hash_helper_t::hs(ci1);
// ci1, ci3 for i in [2; n] -- corresponds c1_array for i in [1; n - 1], c3_array for i in [1; n - 2]
for (size_t idx_n = 0; idx_n < n - 1; ++idx_n)
{
#ifndef NDEBUG
c1_array[idx_n] = ci1;
c3_array[idx_n] = ci3;
#endif
std::vector<const scalar_t*> c_array = { &c_scalar_1, &ci1, &c_scalar_1, &ci3 };
hsc.add_scalar(ci1);
for (size_t idx_L = 0; idx_L < L; ++idx_L)
{
auto& interm = interms[idx_L];
auto& sel = signature.elements[idx_L];
const scalar_t& e_local = *c_array[interm.z % 4];
const scalar_t& g_local = *c_array[interm.h % 4];
sel.r_array[idx_n] = interm.q * g_local / e_local; // r_i
interm.a *= e_local;
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(is_power_of_2(interm.M_cnt), 200);
interm.M_cnt = interm.M_cnt / 2;
// TODO: check M_scalar is power of 2
for (size_t j = 0; j < interm.M_cnt; ++j)
interm.Y_array[j] = (interm.Y_array[2 * j] + *c_array[(2 * j + 1) % 4] * interm.Y_array[2 * j + 1]) / e_local;
interm.z /= 2;
interm.h = invert_last_bit(interm.z);
interm.q.make_random();
interm.H_array[idx_n + 1] = interm.k0 / interm.q * interm.Y_array[interm.h]; // H_{i+1}
sel.H_array[idx_n + 1] = interm.H_array[idx_n + 1].to_public_key();
hsc.add_scalar(sel.r_array[idx_n]);
hsc.add_pub_key(sel.H_array[idx_n + 1]);
}
ci1 = hsc.calc_hash();
ci3 = hash_helper_t::hs(ci1);
}
// challenge cn
#ifndef NDEBUG
c1_array[n - 1] = ci1;
#endif
// challenge c
hsc.add_scalar(ci1);
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE((interm.z == 0 && interm.h == 1) || (interm.z == 1 && interm.h == 0), 7);
const scalar_t& e_local = interm.z == 0 ? c_scalar_1 : ci1;
const scalar_t& g_local = interm.z == 0 ? ci1 : c_scalar_1;
sel.r_array[n - 1] = interm.q * g_local / e_local; // r_n
interm.a *= e_local;
interm.x = interm.a / interm.k0;
interm.q.make_random(); // qn
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.k0 * X_array[2 * ring_mapping[i]] == interm.Z, 201);
point_t W = interm.Z;
for (size_t j = 0; j < n; ++j)
W = W + scalar_t(sel.r_array[j]) * interm.H_array[j];
interm.T = interm.q * W;
sel.T = interm.T.to_public_key();
hsc.add_scalar(sel.r_array[n - 1]);
hsc.add_pub_key(sel.T);
}
scalar_t c = hsc.calc_hash();
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
sel.t = interm.q - interm.x * c;
}
// L2S signature is complete
#ifndef NDEBUG
// self-check
for (size_t i = 0; i < L; ++i)
{
auto& interm = interms[i];
auto& sel = signature.elements[i];
point_t W = interm.Z;
for (size_t j = 0; j < n; ++j)
W = W + scalar_t(sel.r_array[j]) * interm.H_array[j];
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(interm.T == interm.q * W, 230);
point_t R;
R.zero();
bool r = ml2s_rsum(n, X_array, c1_array, c3_array, R);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(r, 231);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(R == interm.x * W, 232);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t == interm.q - interm.x * c, 233);
DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t * W + c * R == interm.T, 234);
}
#endif // #ifndef NDEBUG
return true;
#undef DBG_CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
} // ml2s_lnk_sig_gen
bool ml2s_lnk_sig_verif_v3(const crypto::hash& m, const std::vector<crypto::public_key>& ring_pub_keys, std::vector<crypto::key_image>& key_images,
const ml2s_signature_v3& signature, uint8_t* p_err = nullptr)
{
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
if (!(cond)) { LOG_PRINT_RED("ml2s_lnk_sig_verif: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
if (p_err) *p_err = err_code; return false; }
size_t L = signature.elements.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(L > 0, 0);
size_t n = signature.elements[0].r_array.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(n < 32, 4);
size_t N = (size_t)1 << n;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ring_pub_keys.size() == N / 2, 5);
const scalar_t z = hash_helper_t::hs(m, ring_pub_keys, key_images);
auto hash_point_lambda = [&z](const point_t& point) { return point + z * hash_helper_t::hp(point); };
std::vector<point_t> A_array(L);
std::vector<point_t> I_array(L);
for (size_t i = 0; i < L; ++i)
{
I_array[i].from_key_image(key_images[i]);
A_array[i] = I_array[i].mul_plus_G(z); // = c_point_G + z * I_array[i];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(signature.elements[i].r_array.size() == n, 1);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(signature.elements[i].H_array.size() == n, 2);
}
scalar_t e = hash_helper_t::hs(z);
point_t I_sum;
I_sum.zero();
for (size_t i = 0; i < L; ++i)
I_sum = I_sum + I_array[i];
point_t Q_shift = hash_helper_t::hp(I_sum);
std::vector<point_t> B_array(ring_pub_keys.size());
for (size_t j = 0; j < B_array.size(); ++j)
B_array[j].from_public_key(ring_pub_keys[j]);
std::vector<point_t> X_array(N);
for (size_t i = 0; i < N; i += 2)
X_array[i] = B_array[i / 2] + z * hash_helper_t::hp(ring_pub_keys[i / 2]);
for (size_t i = 1; i < N; i += 2)
X_array[i] = hash_point_lambda(Q_shift + B_array[i / 2]);
// challenge c0
hash_helper_t::hs_t hsc;
hsc.reserve(1 + N + 3 * L);
hsc.add_scalar(e);
hsc.add_points_array(X_array);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hsc.add_pub_key(sel.T0);
hsc.add_pub_key(sel.Z);
}
e = hsc.calc_hash();
scalar_t c0 = e;
std::vector<point_t> Z_array(L);
// check t0 * Z0 + c0 * Z == T0
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
Z_array[i].from_public_key(sel.Z);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t0 * A_array[i] + c0 * Z_array[i] == point_t(sel.T0), 7);
}
// challenges c11, c13
std::vector<scalar_t> c1_array; // counting from 0, so c11 is c1_array[0], will have n elements
std::vector<scalar_t> c3_array; // the same, will have n - 1 elements
hsc.add_scalar(e);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hsc.add_scalar(sel.t0);
hsc.add_pub_key(sel.H_array[0]);
}
e = hsc.calc_hash();
c1_array.emplace_back(e);
c3_array.emplace_back(hash_helper_t::hs(e));
// ci1, ci3 for i in [2; n] -- corresponds c1_array for i in [1; n - 1], c3_array for i in [1; n - 2]
for (size_t i = 1; i < n; ++i)
{
hsc.add_scalar(e);
for (size_t j = 0; j < L; ++j)
{
auto& sel = signature.elements[j];
hsc.add_scalar(sel.r_array[i - 1]);
hsc.add_pub_key(sel.H_array[i]);
}
e = hsc.calc_hash();
c1_array.emplace_back(e);
if (i != n - 1)
c3_array.emplace_back(hash_helper_t::hs(e));
}
// challenge c
hsc.add_scalar(e);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hsc.add_scalar(sel.r_array[n - 1]);
hsc.add_pub_key(sel.T);
}
scalar_t c = hsc.calc_hash();
// Rsum
point_t R = c_point_G;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ml2s_rsum(n, X_array, c1_array, c3_array, R), 8);
point_t cR = c * R;
// final checks
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
point_t S = Z_array[i];
for (size_t j = 0; j < n; ++j)
{
point_t H;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(H.from_public_key(sel.H_array[j]), 13);
S = S + sel.r_array[j] * H;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(!S.is_zero(), 9);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(scalar_t(sel.r_array[j]) != 0, 10);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(!H.is_zero(), 11);
}
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t * S + cR == point_t(sel.T), 12);
}
return true;
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
}