forked from lthn/blockchain
200 lines
5.2 KiB
C++
200 lines
5.2 KiB
C++
// code from tiny_sha3 project
|
|
// distibuted under MIT license:
|
|
// The MIT License(MIT)
|
|
//
|
|
// Copyright(c) 2015 Markku - Juhani O.Saarinen
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files(the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions :
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <cstdint>
|
|
using namespace std;
|
|
|
|
#ifndef KECCAKF_ROUNDS
|
|
#define KECCAKF_ROUNDS 24
|
|
#endif
|
|
|
|
#ifndef ROTL64
|
|
#define ROTL64(x, y) (((x) << (y)) | ((x) >> (64 - (y))))
|
|
#endif
|
|
|
|
// state context
|
|
typedef struct {
|
|
union { // state:
|
|
uint8_t b[200]; // 8-bit bytes
|
|
uint64_t q[25]; // 64-bit words
|
|
} st;
|
|
int pt, rsiz, mdlen; // these don't overflow
|
|
} sha3_ctx_t;
|
|
|
|
|
|
void sha3_keccakf(uint64_t st[25])
|
|
{
|
|
// constants
|
|
const uint64_t keccakf_rndc[24] = {
|
|
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
|
|
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
|
|
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
|
|
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
|
|
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
|
|
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
|
|
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
|
|
0x8000000000008080, 0x0000000080000001, 0x8000000080008008
|
|
};
|
|
const int keccakf_rotc[24] = {
|
|
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
|
|
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
|
|
};
|
|
const int keccakf_piln[24] = {
|
|
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
|
|
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
|
|
};
|
|
|
|
// variables
|
|
int i, j, r;
|
|
uint64_t t, bc[5];
|
|
|
|
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
|
|
uint8_t *v;
|
|
|
|
// endianess conversion. this is redundant on little-endian targets
|
|
for (i = 0; i < 25; i++) {
|
|
v = (uint8_t *)&st[i];
|
|
st[i] = ((uint64_t)v[0]) | (((uint64_t)v[1]) << 8) |
|
|
(((uint64_t)v[2]) << 16) | (((uint64_t)v[3]) << 24) |
|
|
(((uint64_t)v[4]) << 32) | (((uint64_t)v[5]) << 40) |
|
|
(((uint64_t)v[6]) << 48) | (((uint64_t)v[7]) << 56);
|
|
}
|
|
#endif
|
|
|
|
// actual iteration
|
|
for (r = 0; r < KECCAKF_ROUNDS; r++) {
|
|
|
|
// Theta
|
|
for (i = 0; i < 5; i++)
|
|
bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
|
|
for (j = 0; j < 25; j += 5)
|
|
st[j + i] ^= t;
|
|
}
|
|
|
|
// Rho Pi
|
|
t = st[1];
|
|
for (i = 0; i < 24; i++) {
|
|
j = keccakf_piln[i];
|
|
bc[0] = st[j];
|
|
st[j] = ROTL64(t, keccakf_rotc[i]);
|
|
t = bc[0];
|
|
}
|
|
|
|
// Chi
|
|
for (j = 0; j < 25; j += 5) {
|
|
for (i = 0; i < 5; i++)
|
|
bc[i] = st[j + i];
|
|
for (i = 0; i < 5; i++)
|
|
st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
|
|
}
|
|
|
|
// Iota
|
|
st[0] ^= keccakf_rndc[r];
|
|
}
|
|
|
|
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
|
|
// endianess conversion. this is redundant on little-endian targets
|
|
for (i = 0; i < 25; i++) {
|
|
v = (uint8_t *)&st[i];
|
|
t = st[i];
|
|
v[0] = t & 0xFF;
|
|
v[1] = (t >> 8) & 0xFF;
|
|
v[2] = (t >> 16) & 0xFF;
|
|
v[3] = (t >> 24) & 0xFF;
|
|
v[4] = (t >> 32) & 0xFF;
|
|
v[5] = (t >> 40) & 0xFF;
|
|
v[6] = (t >> 48) & 0xFF;
|
|
v[7] = (t >> 56) & 0xFF;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Initialize the context for SHA3
|
|
|
|
int sha3_init(sha3_ctx_t *c, int mdlen)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 25; i++)
|
|
c->st.q[i] = 0;
|
|
c->mdlen = mdlen;
|
|
c->rsiz = 200 - 2 * mdlen;
|
|
c->pt = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// update state with more data
|
|
|
|
int sha3_update(sha3_ctx_t *c, const void *data, size_t len)
|
|
{
|
|
size_t i;
|
|
int j;
|
|
|
|
j = c->pt;
|
|
for (i = 0; i < len; i++) {
|
|
c->st.b[j++] ^= ((const uint8_t *)data)[i];
|
|
if (j >= c->rsiz) {
|
|
sha3_keccakf(c->st.q);
|
|
j = 0;
|
|
}
|
|
}
|
|
c->pt = j;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// finalize and output a hash
|
|
|
|
int sha3_final(void *md, sha3_ctx_t *c)
|
|
{
|
|
int i;
|
|
|
|
c->st.b[c->pt] ^= 0x06;
|
|
c->st.b[c->rsiz - 1] ^= 0x80;
|
|
sha3_keccakf(c->st.q);
|
|
|
|
for (i = 0; i < c->mdlen; i++) {
|
|
((uint8_t *)md)[i] = c->st.b[i];
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
// compute a SHA-3 hash (md) of given byte length from "in"
|
|
|
|
void *sha3(const void *in, size_t inlen, void *md, int mdlen)
|
|
{
|
|
sha3_ctx_t sha3;
|
|
|
|
sha3_init(&sha3, mdlen);
|
|
sha3_update(&sha3, in, inlen);
|
|
sha3_final(md, &sha3);
|
|
|
|
return md;
|
|
}
|