1
0
Fork 0
forked from lthn/blockchain
blockchain/src/crypto/one_out_of_many_proofs.cpp

325 lines
9.7 KiB
C++

// Copyright (c) 2023-2024 Zano Project
// Copyright (c) 2023-2024 sowle (val@zano.org, crypto.sowle@gmail.com)
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
//
#include "one_out_of_many_proofs.h"
#include "../currency_core/crypto_config.h"
#include "../currency_core/currency_config.h" // for static asset checks
#include "epee/include/misc_log_ex.h"
//DISABLE_GCC_AND_CLANG_WARNING(unused-function)
#if 0
# define DBG_VAL_PRINT(x) std::cout << std::setw(30) << std::left << #x ": " << x << std::endl
# define DBG_PRINT(x) std::cout << x << std::endl
#else
# define DBG_VAL_PRINT(x) (void(0))
# define DBG_PRINT(x) (void(0))
#endif
namespace crypto
{
static const size_t N_max = 256;
static const size_t mn_max = 16;
static_assert(CURRENCY_TX_MAX_ALLOWED_INPUTS <= N_max, "CURRENCY_TX_MAX_ALLOWED_INPUTS is inconsistent with one-out-of-many proof limits"); // TODO: consider moving this check out -- sowle
const point_t& get_BGE_generator(size_t index, bool& ok)
{
static std::vector<point_t> precalculated_generators;
if (precalculated_generators.empty())
{
precalculated_generators.resize(mn_max * 2);
scalar_t hash_buf[2] = { hash_helper_t::hs("Zano BGE generator"), 0 };
for(size_t i = 0; i < precalculated_generators.size(); ++i)
{
hash_buf[1].m_u64[0] = i;
precalculated_generators[i] = hash_helper_t::hp(&hash_buf, sizeof hash_buf);
}
}
if (index >= mn_max * 2)
{
ok = false;
return c_point_0;
}
ok = true;
return precalculated_generators[index];
}
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
if (!(cond)) { LOG_PRINT_RED("generate_BGE_proof: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << (int)err_code, LOG_LEVEL_3); \
if (p_err) { *p_err = err_code; } return false; }
bool generate_BGE_proof(const hash& context_hash, const std::vector<point_t>& ring, const scalar_t& secret, const size_t secret_index, BGE_proof& result, uint8_t* p_err /* = nullptr */)
{
static constexpr size_t n = 4; // TODO: @#@# move it out
DBG_PRINT(" - - - generate_BGE_proof - - -");
size_t ring_size = ring.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ring_size > 0, 0);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(secret_index < ring_size, 1);
#ifndef NDEBUG
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ring[secret_index] == secret * crypto::c_point_X, 2);
#endif
const size_t m = std::max(static_cast<uint64_t>(1), constexpr_ceil_log_n(ring_size, n));
const size_t N = constexpr_pow(m, n);
const size_t mn = m * n;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(N <= N_max, 3);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(mn <= mn_max, 4);
scalar_mat_t<n> a_mat(mn); // m x n matrix
a_mat.zero();
std::vector<size_t> l_digits(m); // l => n-ary gidits
size_t l = secret_index;
for(size_t j = 0; j < m; ++j)
{
for(size_t i = n - 1; i != 0; --i) // [n - 1; 1]
{
a_mat(j, i).make_random();
a_mat(j, 0) -= a_mat(j, i); // a[j; 0] = -sum( a[j; i] ), i in [1; n-1]
}
size_t digit = l % n; // j-th digit of secret_index
l_digits[j] = digit;
l = l / n;
}
#ifndef NDEBUG
for(size_t j = 0; j < m; ++j)
{
scalar_t a_sum{};
for(size_t i = 0; i != n; ++i)
a_sum += a_mat(j, i);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(a_sum.is_zero(), 230);
}
#endif
//
// coeffs calculation (naive implementation, consider optimization in future)
//
scalar_vec_t coeffs(N * m); // m x N matrix
coeffs.zero();
for(size_t i = 0; i < N; ++i)
{
coeffs[i] = c_scalar_1; // first row is (1, ..., 1)
size_t i_tmp = i;
size_t m_bound = 1;
for(size_t j = 0; j < m; ++j)
{
size_t i_j = i_tmp % n; // j-th digit of i
i_tmp /= n;
if (i_j == l_digits[j]) // true if j-th digits of i and l matches
{
scalar_t carry{};
for(size_t k = 0; k < m_bound; ++k)
{
scalar_t old = coeffs[k * N + i];
coeffs[k * N + i] *= a_mat(j, i_j);
coeffs[k * N + i] += carry;
carry = old;
}
if (m_bound < m)
coeffs[m_bound * N + i] += carry;
++m_bound;
}
else
{
for(size_t k = 0; k < m_bound; ++k)
coeffs[k * N + i] *= a_mat(j, i_j);
}
}
}
scalar_t r_A = scalar_t::random();
scalar_t r_B = scalar_t::random();
scalar_vec_t ro(m);
ro.make_random();
point_t A = c_point_0;
point_t B = c_point_0;
result.Pk.clear();
bool r = false, r2 = false;
for(size_t j = 0; j < m; ++j)
{
for(size_t i = 0; i < n; ++i)
{
const point_t& gen_1 = get_BGE_generator((j * n + i) * 2 + 0, r);
const point_t& gen_2 = get_BGE_generator((j * n + i) * 2 + 1, r2);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(r && r2, 5);
const scalar_t& a = a_mat(j, i);
A += a * gen_1 - a * a * gen_2;
if (l_digits[j] == i)
B += gen_1 - a * gen_2;
else
B += a * gen_2;
}
point_t Pk = c_point_0;
for(size_t i = 0; i < ring_size; ++i)
Pk += coeffs[j * N + i] * ring[i];
for(size_t i = ring_size; i < N; ++i)
Pk += coeffs[j * N + i] * ring[ring_size - 1];
Pk += ro[j] * c_point_X;
result.Pk.emplace_back(std::move((c_scalar_1div8 * Pk).to_public_key()));
}
A += r_A * c_point_X;
result.A = (c_scalar_1div8 * A).to_public_key();
B += r_B * c_point_X;
result.B = (c_scalar_1div8 * B).to_public_key();
hash_helper_t::hs_t hsc(1 + ring_size + 2 + m);
hsc.add_hash(context_hash);
for(auto& ring_el : ring)
hsc.add_point(c_scalar_1div8 * ring_el);
hsc.add_pub_key(result.A);
hsc.add_pub_key(result.B);
hsc.add_pub_keys_array(result.Pk);
scalar_t x = hsc.calc_hash();
DBG_VAL_PRINT(x);
result.f.resize(m * (n - 1));
for(size_t j = 0; j < m; ++j)
{
for(size_t i = 1; i < n; ++i)
{
result.f[j * (n - 1) + i - 1] = a_mat(j, i);
if (l_digits[j] == i)
result.f[j * (n - 1) + i - 1] += x;
}
}
result.y = r_A + x * r_B;
result.z = 0;
scalar_t x_power = c_scalar_1;
for(size_t k = 0; k < m; ++k)
{
result.z -= x_power * ro[k];
x_power *= x;
}
result.z += secret * x_power;
return true;
}
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
//---------------------------------------------------------------
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
if (!(cond)) { LOG_PRINT_RED("generate_BGE_proof: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << (int)err_code, LOG_LEVEL_3); \
if (p_err) { *p_err = err_code; } return false; }
bool verify_BGE_proof(const hash& context_hash, const std::vector<const public_key*>& ring, const BGE_proof& sig, uint8_t* p_err /* = nullptr */)
{
static constexpr size_t n = 4; // TODO: @#@# move it out
DBG_PRINT(" - - - verify_BGE_proof - - -");
size_t ring_size = ring.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ring_size > 0, 0);
const size_t m = std::max(static_cast<uint64_t>(1), constexpr_ceil_log_n(ring_size, n));
const size_t N = constexpr_pow(m, n);
//const size_t mn = m * n;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sig.Pk.size() == m, 1);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sig.f.size() == m * (n - 1), 2);
hash_helper_t::hs_t hsc(1 + ring_size + 2 + m);
hsc.add_hash(context_hash);
for(const public_key* ppk : ring)
hsc.add_pub_key(*ppk);
hsc.add_pub_key(sig.A);
hsc.add_pub_key(sig.B);
hsc.add_pub_keys_array(sig.Pk);
scalar_t x = hsc.calc_hash();
DBG_VAL_PRINT(x);
scalar_vec_t f0(m); // the first column f_{i,0} = x - sum{j=1}{n-1}( f_{i,j} )
for(size_t j = 0; j < m; ++j)
{
f0[j] = x;
for(size_t i = 1; i < n; ++i)
f0[j] -= sig.f[j * (n - 1) + i - 1];
}
//
// 1
//
point_t A = point_t(sig.A).modify_mul8();
point_t B = point_t(sig.B).modify_mul8();
point_t Z = A + x * B;
bool r = false, r2 = false;
for(size_t j = 0; j < m; ++j)
{
for(size_t i = 0; i < n; ++i)
{
const point_t& gen_1 = get_BGE_generator((j * n + i) * 2 + 0, r);
const point_t& gen_2 = get_BGE_generator((j * n + i) * 2 + 1, r2);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(r && r2, 5);
const scalar_t& f_ji = (i == 0) ? f0[j] : sig.f[j * (n - 1) + i - 1];
Z -= f_ji * gen_1 + f_ji * (x - f_ji) * gen_2;
}
}
Z -= sig.y * c_point_X;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(Z.is_zero(), 100);
//
// 2
//
scalar_vec_t p_vec(N);
for(size_t i = 0; i < N; ++i)
{
p_vec[i] = c_scalar_1;
size_t i_tmp = i;
for(size_t j = 0; j < m; ++j)
{
size_t i_j = i_tmp % n; // j-th digit of i
i_tmp /= n;
const scalar_t& f_jij = (i_j == 0) ? f0[j] : sig.f[j * (n - 1) + i_j - 1];
p_vec[i] *= f_jij;
}
}
for(size_t i = 0; i < ring_size; ++i)
Z += p_vec[i] * point_t(*ring[i]).modify_mul8();
for(size_t i = ring_size; i < N; ++i)
Z += p_vec[i] * point_t(*ring[ring_size - 1]).modify_mul8();
scalar_t x_power = c_scalar_1;
for(size_t k = 0; k < m; ++k)
{
Z -= x_power * point_t(sig.Pk[k]).modify_mul8();
x_power *= x;
}
Z -= sig.z * c_point_X;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(Z.is_zero(), 101);
return true;
}
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
} // namespace crypto