1
0
Fork 0
forked from lthn/blockchain
blockchain/tests/unit_tests/crypto_tests.cpp

803 lines
No EOL
19 KiB
C++

// Copyright (c) 2020 Zano Project
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#define USE_INSECURE_RANDOM_RPNG_ROUTINES // turns on random manupulation for tests
#include "gtest/gtest.h"
#include "crypto/crypto.h"
extern "C" {
#include "crypto/crypto-ops.h"
void fe_reduce(fe u, const fe h)
{
/* From fe_frombytes.c */
// loading changed
int64_t h0 = h[0];
int64_t h1 = h[1];
int64_t h2 = h[2];
int64_t h3 = h[3];
int64_t h4 = h[4];
int64_t h5 = h[5];
int64_t h6 = h[6];
int64_t h7 = h[7];
int64_t h8 = h[8];
int64_t h9 = h[9];
int64_t carry0;
int64_t carry1;
int64_t carry2;
int64_t carry3;
int64_t carry4;
int64_t carry5;
int64_t carry6;
int64_t carry7;
int64_t carry8;
int64_t carry9;
carry9 = (h9 + (int64_t)(1 << 24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
carry1 = (h1 + (int64_t)(1 << 24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
carry3 = (h3 + (int64_t)(1 << 24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
carry5 = (h5 + (int64_t)(1 << 24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
carry7 = (h7 + (int64_t)(1 << 24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
carry0 = (h0 + (int64_t)(1 << 25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
carry2 = (h2 + (int64_t)(1 << 25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
carry4 = (h4 + (int64_t)(1 << 25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry6 = (h6 + (int64_t)(1 << 25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
carry8 = (h8 + (int64_t)(1 << 25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
u[0] = h0;
u[1] = h1;
u[2] = h2;
u[3] = h3;
u[4] = h4;
u[5] = h5;
u[6] = h6;
u[7] = h7;
u[8] = h8;
u[9] = h9;
/* End fe_frombytes.c */
}
void sc_mul(unsigned char *s, const unsigned char *a, const unsigned char *b)
{
unsigned char c[32];
unsigned char neg_a[32];
sc_0(c);
sc_sub(neg_a, c, a);
// s = c - ab
sc_mulsub(s, neg_a, b, c);
}
} // extern "C"
unsigned char Lm2[32] = { 0xeb, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x10 };
// out = z ^ s (mod l)
void sc_exp(unsigned char* out, const unsigned char* z, const unsigned char* s)
{
sc_0(out);
out[0] = 1;
if (sc_isnonzero(s) == 0)
{
return;
}
// calc position of the most significant bit of s
size_t msb_s = 0;
for (size_t i = 31; i != SIZE_MAX; --i)
{
if (s[i] != 0)
{
msb_s = 8 * i;
uint8_t t = s[i] >> 1;
while (t)
{
t >>= 1;
++msb_s;
}
break;
}
}
//memcpy(out, z, sizeof(crypto::ec_scalar));
for (size_t i = msb_s; i != SIZE_MAX; --i)
{
sc_mul(out, out, out);
std::cout << "sc_mul(out, out, out);" << std::endl;
uint8_t bit = (s[i / 8] >> (i % 8)) & 1;
if (bit)
{
sc_mul(out, out, z);
std::cout << "sc_mul(out, out, z);" << std::endl;
}
}
}
void sc_invert(unsigned char* out, const unsigned char* z)
{
memcpy(out, z, sizeof(crypto::ec_scalar));
for(size_t i = 0; i < 128; ++i)
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, out);
sc_mul(out, out, z);
sc_mul(out, out, out);
sc_mul(out, out, z);
}
template<class pod_t>
std::string pod_to_hex_big_endian(const pod_t &h)
{
constexpr char hexmap[] = "0123456789abcdef";
const char* data = reinterpret_cast<const char*>(&h);
size_t len = sizeof h;
std::string s(len * 2, ' ');
for (size_t i = 0; i < len; ++i) {
s[2 * i] = hexmap[(data[len - 1 - i] & 0xF0) >> 4];
s[2 * i + 1] = hexmap[(data[len - 1 - i] & 0x0F)];
}
return s;
}
int fe_cmp(const fe a, const fe b)
{
for (size_t i = 9; i != SIZE_MAX; --i)
{
if (reinterpret_cast<const uint32_t&>(a[i]) < reinterpret_cast<const uint32_t&>(b[i])) return -1;
if (reinterpret_cast<const uint32_t&>(a[i]) > reinterpret_cast<const uint32_t&>(b[i])) return 1;
}
return 0;
}
static const fe scalar_L_fe = { 16110573, 10012311, -6632702, 16062397, 5471207, 0, 0, 0, 0, 4194304 };
__declspec(align(32))
struct scalar_t
{
//fe m_fe; // 40 bytes, array 10 * 4, optimized form
union
{
uint64_t m_u64[4];
unsigned char m_s[32];
};
// DONE! consider 1) change to aligned array of unsigned chars
// consider 2) add 32 byte after to speed up sc_reduce by decreasing num of copy operations
scalar_t()
{}
scalar_t(uint64_t a0, uint64_t a1, uint64_t a2, uint64_t a3)
{
m_u64[0] = a0;
m_u64[1] = a1;
m_u64[2] = a2;
m_u64[3] = a3;
}
scalar_t(int64_t v)
{
zero();
if (v == 0)
{
return;
}
//unsigned char bytes[32] = {0};
reinterpret_cast<int64_t&>(m_s) = v;
//fe_frombytes(m_fe, bytes);
// do not need to call reduce as 2^64 < L
}
unsigned char* data()
{
return &m_s[0];
}
const unsigned char* data() const
{
return &m_s[0];
}
operator crypto::secret_key() const
{
crypto::secret_key result;
memcpy(result.data, &m_s, sizeof result.data);
//fe_tobytes(reinterpret_cast<unsigned char*>(&result), m_fe);
return result;
}
bool from_secret_key(const crypto::secret_key& sk)
{
//fe_frombytes(m_fe, reinterpret_cast<const unsigned char*>(&sk));
return false;
}
void zero()
{
//fe_0(m_fe);
m_u64[0] = 0;
m_u64[1] = 0;
m_u64[2] = 0;
m_u64[3] = 0;
//memset(&m_s, 0, sizeof m_s);
}
void make_random()
{
unsigned char tmp[64];
crypto::generate_random_bytes(64, tmp);
sc_reduce(tmp);
memcpy(&m_s, tmp, 32);
}
bool is_zero() const
{
return sc_isnonzero(&m_s[0]) == 0;
}
scalar_t operator+(const scalar_t& v) const
{
scalar_t result;
sc_add(reinterpret_cast<unsigned char*>(&result), reinterpret_cast<const unsigned char*>(&m_s), reinterpret_cast<const unsigned char*>(&v));
return result;
}
scalar_t operator-(const scalar_t& v) const
{
scalar_t result;
sc_sub(reinterpret_cast<unsigned char*>(&result), reinterpret_cast<const unsigned char*>(&m_s), reinterpret_cast<const unsigned char*>(&v));
return result;
}
scalar_t operator*(const scalar_t& v) const
{
scalar_t result;
sc_mul(reinterpret_cast<unsigned char*>(&result), reinterpret_cast<const unsigned char*>(&m_s), reinterpret_cast<const unsigned char*>(&v));
return result;
}
scalar_t reciprocal() const
{
/*unsigned char bytes[32] = {2};
fe t;
fe_frombytes(t, (unsigned char*)&bytes);
fe r;
fe_invert(r, t);
fe m;
fe_mul(m, r, t);
fe r2;
my_fe_invert(r2, t);
fe m2;
fe_mul(m2, r2, t);
scalar_t result;
fe v_f;
fe result_f;
fe_frombytes(v_f, reinterpret_cast<const unsigned char*>(&m_s));
my_fe_invert(result_f, v_f);
fe_tobytes(reinterpret_cast<unsigned char*>(&result), result_f);
//sc_reduce(reinterpret_cast<unsigned char*>(&result));
fe result_check;
fe_frombytes(result_check, reinterpret_cast<unsigned char*>(&result));
fe v_check;
fe_invert(v_check, result_check);
//sc_reduce(reinterpret_cast<unsigned char*>(&result));
return result;*/
scalar_t result;
fe v_f;
fe result_f;
fe_frombytes(v_f, reinterpret_cast<const unsigned char*>(&m_s));
fe_invert(result_f, v_f);
/*fe x2;
fe_mul(x2, result_f, v_f);
fe_reduce(result_f, result_f);
if (fe_cmp(result_f, scalar_L_fe) > 0)
{
// result_f > L
fe_sub(result_f, result_f, scalar_L_fe);
if (fe_cmp(result_f, scalar_L_fe) >= 0)
return false; // fail
}*/
unsigned char tmp[64] = { 0 };
fe_tobytes(reinterpret_cast<unsigned char*>(&tmp), result_f);
sc_reduce(tmp);
memcpy(&result, &tmp, sizeof result);
return result;
}
scalar_t operator/(const scalar_t& v) const
{
return operator*(v.reciprocal());
}
bool operator==(const scalar_t& rhs) const
{
return
m_u64[0] == rhs.m_u64[0] &&
m_u64[1] == rhs.m_u64[1] &&
m_u64[2] == rhs.m_u64[2] &&
m_u64[3] == rhs.m_u64[3];
}
bool operator<(const scalar_t& rhs) const
{
if (m_u64[3] < rhs.m_u64[3]) return true;
if (m_u64[3] > rhs.m_u64[3]) return false;
if (m_u64[2] < rhs.m_u64[2]) return true;
if (m_u64[2] > rhs.m_u64[2]) return false;
if (m_u64[1] < rhs.m_u64[1]) return true;
if (m_u64[1] > rhs.m_u64[1]) return false;
if (m_u64[0] < rhs.m_u64[0]) return true;
if (m_u64[0] > rhs.m_u64[0]) return false;
return false;
}
bool operator>(const scalar_t& rhs) const
{
if (m_u64[3] < rhs.m_u64[3]) return false;
if (m_u64[3] > rhs.m_u64[3]) return true;
if (m_u64[2] < rhs.m_u64[2]) return false;
if (m_u64[2] > rhs.m_u64[2]) return true;
if (m_u64[1] < rhs.m_u64[1]) return false;
if (m_u64[1] > rhs.m_u64[1]) return true;
if (m_u64[0] < rhs.m_u64[0]) return false;
if (m_u64[0] > rhs.m_u64[0]) return true;
return false;
}
friend std::ostream& operator<<(std::ostream& ss, const scalar_t &v)
{
return ss << "0x" << pod_to_hex_big_endian(v);
}
}; // struct scalar_t
//__declspec(align(32))
struct point_t
{
// A point(x, y) is represented in extended homogeneous coordinates (X, Y, Z, T)
// with x = X / Z, y = Y / Z, x * y = T / Z.
ge_p3 m_p3;
point_t()
{
}
void zero()
{
ge_p3_0(&m_p3);
}
bool from_public_key(const crypto::public_key& pk)
{
return ge_frombytes_vartime(&m_p3, reinterpret_cast<const unsigned char*>(&pk)) == 0;
}
operator crypto::public_key()
{
crypto::public_key result;
ge_p3_tobytes((unsigned char*)&result, &m_p3);
return result;
}
point_t operator+(const point_t& rhs)
{
point_t result;
ge_cached rhs_c;
ge_p1p1 t;
ge_p3_to_cached(&rhs_c, &rhs.m_p3);
ge_add(&t, &m_p3, &rhs_c);
ge_p1p1_to_p3(&result.m_p3, &t);
return result;
}
point_t operator-(const point_t& rhs)
{
point_t result;
ge_cached rhs_c;
ge_p1p1 t;
ge_p3_to_cached(&rhs_c, &rhs.m_p3);
ge_sub(&t, &m_p3, &rhs_c);
ge_p1p1_to_p3(&result.m_p3, &t);
return result;
}
friend point_t operator*(const scalar_t& lhs, const point_t& rhs)
{
point_t result;
ge_scalarmult_p3(&result.m_p3, reinterpret_cast<const unsigned char*>(&lhs), &rhs.m_p3);
return result;
}
friend bool operator==(const point_t& lhs, const point_t& rhs)
{
// convert to xy form, then compare components (because (z, y, z, t) representation is not unique)
fe lrecip, lx, ly;
fe rrecip, rx, ry;
fe_invert(lrecip, lhs.m_p3.Z);
fe_invert(rrecip, rhs.m_p3.Z);
fe_mul(lx, lhs.m_p3.X, lrecip);
fe_mul(rx, rhs.m_p3.X, rrecip);
if (memcmp(&lx, &rx, sizeof lx) != 0)
return false;
fe_mul(ly, lhs.m_p3.Y, lrecip);
fe_mul(ry, rhs.m_p3.Y, rrecip);
if (memcmp(&ly, &ry, sizeof ly) != 0)
return false;
return true;
};
}; // struct point_t
struct point_g_t : public point_t
{
point_g_t()
{
}
friend point_t operator*(const scalar_t& lhs, const point_g_t&)
{
point_t result;
ge_scalarmult_base(&result.m_p3, reinterpret_cast<const unsigned char*>(&lhs));
return result;
}
/*friend point_t operator*(const int64_t lhs, const point_g_t& rhs)
{
return operator*(scalar_t)
}*/
static_assert(sizeof(crypto::public_key) == 32, "size error");
}; // struct point_g_t
static const point_g_t point_G;
static const scalar_t scalar_L = { 0x5812631a5cf5d3ed, 0x14def9dea2f79cd6, 0x0, 0x1000000000000000 };
static const scalar_t scalar_Lm1 = { 0x5812631a5cf5d3ec, 0x14def9dea2f79cd6, 0x0, 0x1000000000000000 };
static const scalar_t scalar_P = { 0xffffffffffffffed, 0xffffffffffffffff, 0xffffffffffffffff, 0x7fffffffffffffff };
static const scalar_t scalar_Pm1 = { 0xffffffffffffffec, 0xffffffffffffffff, 0xffffffffffffffff, 0x7fffffffffffffff };
static const scalar_t scalar_256m1 = { 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff };
/* temporary disable in order not to break the compilation
TEST(crypto, scalar_basics)
{
scalar_t zero = 0;
ASSERT_TRUE(zero.is_zero());
scalar_t one = 1;
ASSERT_FALSE(one.is_zero());
ASSERT_TRUE(one > zero);
scalar_t z = 0;
for (size_t j = 0; j < 1000; ++j)
{
z.make_random();
ASSERT_FALSE(z.is_zero());
ASSERT_GT(z, z - 1);
ASSERT_LT(z, z + 1);
}
ASSERT_TRUE(scalar_L > 0 && !(scalar_L < 0));
ASSERT_TRUE(scalar_Lm1 > 0 && !(scalar_Lm1 < 0));
ASSERT_TRUE(scalar_Lm1 < scalar_L);
ASSERT_FALSE(scalar_Lm1 > scalar_L);
ASSERT_TRUE(scalar_P > scalar_Pm1);
ASSERT_FALSE(scalar_P < scalar_Pm1);
std::cout << "0 = " << zero << std::endl;
std::cout << "1 = " << one << std::endl;
std::cout << "L = " << scalar_L << std::endl;
std::cout << "Lm1 = " << scalar_Lm1 << std::endl;
std::cout << "P = " << scalar_P << std::endl;
std::cout << "Pm1 = " << scalar_Pm1 << std::endl;
// check rolling over L for scalars arithmetics
ASSERT_EQ(scalar_Lm1 + 1, 0);
ASSERT_EQ(scalar_t(0) - 1, scalar_Lm1);
ASSERT_EQ(scalar_Lm1 * 2, scalar_Lm1 - 1); // (L - 1) * 2 = L + L - 2 = (L - 1) - 1 (mod L)
ASSERT_EQ(scalar_Lm1 * 100, scalar_Lm1 - 99);
ASSERT_EQ(scalar_Lm1 * scalar_Lm1, 1); // (L - 1) * (L - 1) = L*L - 2L + 1 = 1 (mod L)
std::cout << std::endl;
fe L_fe;
fe_frombytes(L_fe, &scalar_L.m_s[0]);
fe Pm1_fe;
fe_frombytes(Pm1_fe, &scalar_Pm1.m_s[0]);
fe r;
fe f_1 = { 1 };
fe_add(r, Pm1_fe, f_1);
while(true)
{
static int ti = 2;
static int pi = 3;
scalar_t t = ti;
scalar_t p = pi;
scalar_t r = 0;
//sc_exp(r.data(), t.data(), Lm2);
sc_invert(r.data(), t.data());
std::cout << ti << " ^ L-2" << " = " << r << std::endl;
r = r * 6;
std::cout << r << std::endl;
}
scalar_t a = 2;
a = a / 2;
std::cout << "2 / 2 = " << a << std::endl;
a = scalar_Lm1 / 2;
std::cout << "L-1 / 2 = " << a << std::endl;
a = a * 2;
std::cout << "L-1 / 2 * 2 = " << a << std::endl;
}
TEST(crypto, point_basics)
{
scalar_t s = 4;
point_t E = s * point_G;
point_t X = 4 * E;
point_t K = 193847 * point_G;
point_t C = E + K;
ASSERT_TRUE(X == 16 * point_G);
ASSERT_TRUE(C - K == E);
ASSERT_TRUE(C - E == K);
ASSERT_TRUE(C == 193851 * point_G);
}
TEST(crypto, scalar_reciprocal)
{
int64_t test_nums[] = {1, 2, 10};
for (size_t i = 0; i < sizeof test_nums / sizeof test_nums[0]; ++i)
{
scalar_t s = test_nums[i];
scalar_t z = s - s;
ASSERT_TRUE(z.is_zero());
}
scalar_t s = 20;
scalar_t d = 5;
scalar_t e = s / d;
scalar_t m = e * d;
ASSERT_TRUE(m == s);
}
TEST(crypto, scalars)
{
scalar_t s = 20;
scalar_t d = 5;
scalar_t e = s / d;
scalar_t m = e * d;
ASSERT_TRUE(m == s);
}
*/