forked from lthn/blockchain
262 lines
5.5 KiB
C++
262 lines
5.5 KiB
C++
// Copyright (c) 2020 Zano Project
|
|
// Distributed under the MIT/X11 software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#define USE_INSECURE_RANDOM_RPNG_ROUTINES // turns on random manupulation for tests
|
|
#include "gtest/gtest.h"
|
|
#include "crypto/crypto.h"
|
|
|
|
extern "C" {
|
|
#include "crypto/crypto-ops.h"
|
|
|
|
/*
|
|
Input:
|
|
a[0]+256*a[1]+...+256^31*a[31] = a
|
|
b[0]+256*b[1]+...+256^31*b[31] = b
|
|
Output:
|
|
s[0]+256*s[1]+...+256^31*s[31] = (ab) mod l
|
|
where l = 2^252 + 27742317777372353535851937790883648493
|
|
*/
|
|
|
|
// TODO: make more efficient multiplication
|
|
void sc_mul(unsigned char *s, const unsigned char *a, const unsigned char *b)
|
|
{
|
|
unsigned char c[32];
|
|
unsigned char neg_a[32];
|
|
sc_0(c);
|
|
sc_sub(neg_a, c, a);
|
|
// s = c - ab
|
|
sc_mulsub(s, neg_a, b, c);
|
|
}
|
|
|
|
|
|
} // extern "C"
|
|
|
|
|
|
struct scalar_t
|
|
{
|
|
//fe m_fe; // 40 bytes, array 10 * 4, optimized form
|
|
crypto::ec_scalar m_s;
|
|
|
|
scalar_t()
|
|
{}
|
|
|
|
scalar_t(int64_t v)
|
|
{
|
|
zero();
|
|
if (v == 0)
|
|
{
|
|
return;
|
|
}
|
|
//unsigned char bytes[32] = {0};
|
|
reinterpret_cast<int64_t&>(m_s) = v;
|
|
//fe_frombytes(m_fe, bytes);
|
|
// do not need to call reduce as 2^64 < L
|
|
}
|
|
|
|
operator crypto::secret_key() const
|
|
{
|
|
crypto::secret_key result;
|
|
memcpy(result.data, m_s.data, sizeof result.data);
|
|
//fe_tobytes(reinterpret_cast<unsigned char*>(&result), m_fe);
|
|
return result;
|
|
}
|
|
|
|
bool from_secret_key(const crypto::secret_key& sk)
|
|
{
|
|
//fe_frombytes(m_fe, reinterpret_cast<const unsigned char*>(&sk));
|
|
return false;
|
|
}
|
|
|
|
void zero()
|
|
{
|
|
//fe_0(m_fe);
|
|
memset(m_s.data, 0, sizeof m_s.data);
|
|
}
|
|
|
|
scalar_t operator*(const scalar_t& v) const
|
|
{
|
|
scalar_t result;
|
|
sc_mul(reinterpret_cast<unsigned char*>(&result), reinterpret_cast<const unsigned char*>(&m_s), reinterpret_cast<const unsigned char*>(&v));
|
|
return result;
|
|
}
|
|
|
|
scalar_t reciprocal() const
|
|
{
|
|
/*unsigned char bytes[32] = {2};
|
|
fe t;
|
|
fe_frombytes(t, (unsigned char*)&bytes);
|
|
fe r;
|
|
fe_invert(r, t);
|
|
fe m;
|
|
fe_mul(m, r, t);
|
|
|
|
|
|
fe r2;
|
|
my_fe_invert(r2, t);
|
|
fe m2;
|
|
fe_mul(m2, r2, t);
|
|
|
|
scalar_t result;
|
|
fe v_f;
|
|
fe result_f;
|
|
fe_frombytes(v_f, reinterpret_cast<const unsigned char*>(&m_s));
|
|
my_fe_invert(result_f, v_f);
|
|
fe_tobytes(reinterpret_cast<unsigned char*>(&result), result_f);
|
|
//sc_reduce(reinterpret_cast<unsigned char*>(&result));
|
|
fe result_check;
|
|
fe_frombytes(result_check, reinterpret_cast<unsigned char*>(&result));
|
|
fe v_check;
|
|
fe_invert(v_check, result_check);
|
|
//sc_reduce(reinterpret_cast<unsigned char*>(&result));
|
|
return result;*/
|
|
|
|
scalar_t result;
|
|
fe v_f;
|
|
fe result_f;
|
|
fe_frombytes(v_f, reinterpret_cast<const unsigned char*>(&m_s));
|
|
fe_invert(result_f, v_f);
|
|
fe_tobytes(reinterpret_cast<unsigned char*>(&result), result_f);
|
|
return result;
|
|
}
|
|
|
|
scalar_t operator/(const scalar_t& v) const
|
|
{
|
|
return operator*(v.reciprocal());
|
|
}
|
|
|
|
friend bool operator==(const scalar_t& lhs, const scalar_t& rhs)
|
|
{
|
|
return memcmp(&lhs, &rhs, sizeof lhs) == 0;
|
|
}
|
|
|
|
};
|
|
|
|
//__declspec(align(32))
|
|
struct point_t
|
|
{
|
|
ge_p3 m_p3;
|
|
|
|
point_t()
|
|
{
|
|
}
|
|
|
|
void zero()
|
|
{
|
|
ge_p3_0(&m_p3);
|
|
}
|
|
|
|
bool from_public_key(const crypto::public_key& pk)
|
|
{
|
|
return ge_frombytes_vartime(&m_p3, reinterpret_cast<const unsigned char*>(&pk)) == 0;
|
|
}
|
|
|
|
operator crypto::public_key()
|
|
{
|
|
crypto::public_key result;
|
|
static_assert(sizeof result == 32, "size error");
|
|
ge_p3_tobytes((unsigned char*)&result, &m_p3);
|
|
return result;
|
|
}
|
|
|
|
point_t operator+(const point_t& rhs)
|
|
{
|
|
point_t result;
|
|
ge_cached rhs_c;
|
|
ge_p1p1 t;
|
|
ge_p3_to_cached(&rhs_c, &rhs.m_p3);
|
|
ge_add(&t, &m_p3, &rhs_c);
|
|
ge_p1p1_to_p3(&result.m_p3, &t);
|
|
return result;
|
|
}
|
|
|
|
point_t operator-(const point_t& rhs)
|
|
{
|
|
point_t result;
|
|
ge_cached rhs_c;
|
|
ge_p1p1 t;
|
|
ge_p3_to_cached(&rhs_c, &rhs.m_p3);
|
|
ge_sub(&t, &m_p3, &rhs_c);
|
|
ge_p1p1_to_p3(&result.m_p3, &t);
|
|
return result;
|
|
}
|
|
|
|
friend point_t operator*(const scalar_t& lhs, const point_t& rhs)
|
|
{
|
|
point_t result;
|
|
ge_scalarmult_p3(&result.m_p3, reinterpret_cast<const unsigned char*>(&lhs), &rhs.m_p3);
|
|
return result;
|
|
}
|
|
|
|
friend bool operator==(const point_t& lhs, const point_t& rhs)
|
|
{
|
|
fe lrecip, lx, ly;
|
|
fe rrecip, rx, ry;
|
|
|
|
fe_invert(lrecip, lhs.m_p3.Z);
|
|
fe_invert(rrecip, rhs.m_p3.Z);
|
|
|
|
fe_mul(lx, lhs.m_p3.X, lrecip);
|
|
fe_mul(rx, rhs.m_p3.X, rrecip);
|
|
if (memcmp(&lx, &rx, sizeof lx) != 0)
|
|
return false;
|
|
|
|
fe_mul(ly, lhs.m_p3.Y, lrecip);
|
|
fe_mul(ry, rhs.m_p3.Y, rrecip);
|
|
if (memcmp(&ly, &ry, sizeof ly) != 0)
|
|
return false;
|
|
|
|
return true;
|
|
};
|
|
};
|
|
|
|
struct point_g_t : public point_t
|
|
{
|
|
point_g_t()
|
|
{
|
|
|
|
}
|
|
|
|
friend point_t operator*(const scalar_t& lhs, const point_g_t&)
|
|
{
|
|
point_t result;
|
|
ge_scalarmult_base(&result.m_p3, reinterpret_cast<const unsigned char*>(&lhs));
|
|
return result;
|
|
}
|
|
|
|
/*friend point_t operator*(const int64_t lhs, const point_g_t& rhs)
|
|
{
|
|
return operator*(scalar_t)
|
|
}*/
|
|
|
|
|
|
|
|
};
|
|
|
|
static const point_g_t point_G;
|
|
|
|
TEST(crypto, basics)
|
|
{
|
|
scalar_t s = 4;
|
|
point_t E = s * point_G;
|
|
point_t X = 4 * E;
|
|
point_t K = 193847 * point_G;
|
|
point_t C = E + K;
|
|
|
|
ASSERT_TRUE(X == 16 * point_G);
|
|
ASSERT_TRUE(C - K == E);
|
|
ASSERT_TRUE(C - E == K);
|
|
ASSERT_TRUE(C == 193851 * point_G);
|
|
|
|
}
|
|
|
|
TEST(crypto, scalars)
|
|
{
|
|
scalar_t s = 20;
|
|
scalar_t d = 5;
|
|
scalar_t q = s * d;
|
|
scalar_t e = s / d;
|
|
scalar_t m = e * d;
|
|
|
|
// ASSERT_TRUE(m == s);
|
|
}
|