1
0
Fork 0
forked from lthn/blockchain
blockchain/tests/unit_tests/crypto_tests.cpp
2020-12-14 21:37:18 +03:00

262 lines
5.5 KiB
C++

// Copyright (c) 2020 Zano Project
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#define USE_INSECURE_RANDOM_RPNG_ROUTINES // turns on random manupulation for tests
#include "gtest/gtest.h"
#include "crypto/crypto.h"
extern "C" {
#include "crypto/crypto-ops.h"
/*
Input:
a[0]+256*a[1]+...+256^31*a[31] = a
b[0]+256*b[1]+...+256^31*b[31] = b
Output:
s[0]+256*s[1]+...+256^31*s[31] = (ab) mod l
where l = 2^252 + 27742317777372353535851937790883648493
*/
// TODO: make more efficient multiplication
void sc_mul(unsigned char *s, const unsigned char *a, const unsigned char *b)
{
unsigned char c[32];
unsigned char neg_a[32];
sc_0(c);
sc_sub(neg_a, c, a);
// s = c - ab
sc_mulsub(s, neg_a, b, c);
}
} // extern "C"
struct scalar_t
{
//fe m_fe; // 40 bytes, array 10 * 4, optimized form
crypto::ec_scalar m_s;
scalar_t()
{}
scalar_t(int64_t v)
{
zero();
if (v == 0)
{
return;
}
//unsigned char bytes[32] = {0};
reinterpret_cast<int64_t&>(m_s) = v;
//fe_frombytes(m_fe, bytes);
// do not need to call reduce as 2^64 < L
}
operator crypto::secret_key() const
{
crypto::secret_key result;
memcpy(result.data, m_s.data, sizeof result.data);
//fe_tobytes(reinterpret_cast<unsigned char*>(&result), m_fe);
return result;
}
bool from_secret_key(const crypto::secret_key& sk)
{
//fe_frombytes(m_fe, reinterpret_cast<const unsigned char*>(&sk));
return false;
}
void zero()
{
//fe_0(m_fe);
memset(m_s.data, 0, sizeof m_s.data);
}
scalar_t operator*(const scalar_t& v) const
{
scalar_t result;
sc_mul(reinterpret_cast<unsigned char*>(&result), reinterpret_cast<const unsigned char*>(&m_s), reinterpret_cast<const unsigned char*>(&v));
return result;
}
scalar_t reciprocal() const
{
/*unsigned char bytes[32] = {2};
fe t;
fe_frombytes(t, (unsigned char*)&bytes);
fe r;
fe_invert(r, t);
fe m;
fe_mul(m, r, t);
fe r2;
my_fe_invert(r2, t);
fe m2;
fe_mul(m2, r2, t);
scalar_t result;
fe v_f;
fe result_f;
fe_frombytes(v_f, reinterpret_cast<const unsigned char*>(&m_s));
my_fe_invert(result_f, v_f);
fe_tobytes(reinterpret_cast<unsigned char*>(&result), result_f);
//sc_reduce(reinterpret_cast<unsigned char*>(&result));
fe result_check;
fe_frombytes(result_check, reinterpret_cast<unsigned char*>(&result));
fe v_check;
fe_invert(v_check, result_check);
//sc_reduce(reinterpret_cast<unsigned char*>(&result));
return result;*/
scalar_t result;
fe v_f;
fe result_f;
fe_frombytes(v_f, reinterpret_cast<const unsigned char*>(&m_s));
fe_invert(result_f, v_f);
fe_tobytes(reinterpret_cast<unsigned char*>(&result), result_f);
return result;
}
scalar_t operator/(const scalar_t& v) const
{
return operator*(v.reciprocal());
}
friend bool operator==(const scalar_t& lhs, const scalar_t& rhs)
{
return memcmp(&lhs, &rhs, sizeof lhs) == 0;
}
};
//__declspec(align(32))
struct point_t
{
ge_p3 m_p3;
point_t()
{
}
void zero()
{
ge_p3_0(&m_p3);
}
bool from_public_key(const crypto::public_key& pk)
{
return ge_frombytes_vartime(&m_p3, reinterpret_cast<const unsigned char*>(&pk)) == 0;
}
operator crypto::public_key()
{
crypto::public_key result;
static_assert(sizeof result == 32, "size error");
ge_p3_tobytes((unsigned char*)&result, &m_p3);
return result;
}
point_t operator+(const point_t& rhs)
{
point_t result;
ge_cached rhs_c;
ge_p1p1 t;
ge_p3_to_cached(&rhs_c, &rhs.m_p3);
ge_add(&t, &m_p3, &rhs_c);
ge_p1p1_to_p3(&result.m_p3, &t);
return result;
}
point_t operator-(const point_t& rhs)
{
point_t result;
ge_cached rhs_c;
ge_p1p1 t;
ge_p3_to_cached(&rhs_c, &rhs.m_p3);
ge_sub(&t, &m_p3, &rhs_c);
ge_p1p1_to_p3(&result.m_p3, &t);
return result;
}
friend point_t operator*(const scalar_t& lhs, const point_t& rhs)
{
point_t result;
ge_scalarmult_p3(&result.m_p3, reinterpret_cast<const unsigned char*>(&lhs), &rhs.m_p3);
return result;
}
friend bool operator==(const point_t& lhs, const point_t& rhs)
{
fe lrecip, lx, ly;
fe rrecip, rx, ry;
fe_invert(lrecip, lhs.m_p3.Z);
fe_invert(rrecip, rhs.m_p3.Z);
fe_mul(lx, lhs.m_p3.X, lrecip);
fe_mul(rx, rhs.m_p3.X, rrecip);
if (memcmp(&lx, &rx, sizeof lx) != 0)
return false;
fe_mul(ly, lhs.m_p3.Y, lrecip);
fe_mul(ry, rhs.m_p3.Y, rrecip);
if (memcmp(&ly, &ry, sizeof ly) != 0)
return false;
return true;
};
};
struct point_g_t : public point_t
{
point_g_t()
{
}
friend point_t operator*(const scalar_t& lhs, const point_g_t&)
{
point_t result;
ge_scalarmult_base(&result.m_p3, reinterpret_cast<const unsigned char*>(&lhs));
return result;
}
/*friend point_t operator*(const int64_t lhs, const point_g_t& rhs)
{
return operator*(scalar_t)
}*/
};
static const point_g_t point_G;
TEST(crypto, basics)
{
scalar_t s = 4;
point_t E = s * point_G;
point_t X = 4 * E;
point_t K = 193847 * point_G;
point_t C = E + K;
ASSERT_TRUE(X == 16 * point_G);
ASSERT_TRUE(C - K == E);
ASSERT_TRUE(C - E == K);
ASSERT_TRUE(C == 193851 * point_G);
}
TEST(crypto, scalars)
{
scalar_t s = 20;
scalar_t d = 5;
scalar_t q = s * d;
scalar_t e = s / d;
scalar_t m = e * d;
// ASSERT_TRUE(m == s);
}