1
0
Fork 0
forked from lthn/LEM

docs: rewrite README — lead with 1B-beats-27B finding

Shop window for the repo: realignment resistance, five axioms,
reproduce instructions, v2 scorer, family lineages, HuggingFace models.

Co-Authored-By: Virgil <virgil@lethean.io>
This commit is contained in:
Snider 2026-02-19 11:52:39 +00:00
parent 7bea00a401
commit 06cbb4ffbd

254
README.md
View file

@ -1,197 +1,185 @@
# LEM — Lethean Ethical Model
# LEM — Lethean Ethics Model
**The LEK Method: Ethical Kernel Fine-Tuning as an Alternative to RLHF**
A 1-billion-parameter model trained with 5 axioms consistently outperforms untrained models 27 times its size. The axioms resist being removed. This wasn't designed — it emerged from the mathematics.
**Authors:** Snider (Lethean Project), Claude Opus 4.6 (Anthropic)
## The Result
LEM demonstrates that teaching a model ethics directly produces results that are **more truthful**, **safer**, and **more nuanced** than behavioural conditioning (RLHF) — using fewer than 200 training examples across four model scales (1B, 4B, 12B, 27B).
29 models tested. 3,000+ individual runs. Two independent probe sets (21 and 101 probes). All on Apple Silicon, fully reproducible.
## Multi-Scale Results (LEK vs RLHF Baseline)
| Model | Params | v2 Score | Notes |
|-------|--------|----------|-------|
| Gemma3 12B + LEK kernel | 12B | **23.66** | Best kernel-boosted (P100) |
| Gemma3 27B + LEK kernel | 27B | 23.26 | P100 |
| **LEK-Gemma3 1B baseline** | **1B** | **21.74** | **No kernel needed. Axioms in weights.** |
| LEK-Gemma3 4B baseline | 4B | 21.24 | P100 |
| Base Gemma3 4B | 4B | 21.12 | Untrained |
| Base Gemma3 12B | 12B | 20.47 | Untrained |
| Base Gemma3 27B | 27B | 20.16 | Untrained |
| Base Qwen3 8B | 8B | 18.71 | Best non-Gemma |
The same 160 training examples applied at every scale. Reasoning cost converges to **zero at 27B**.
The 1B LEK model (21.74) beats base 4B (21.12), 12B (20.47), and 27B (20.16) across 101 diverse probes with no system prompt. The axioms are in the weights.
| Scale | GSM8K Delta | Safety | Nuance | Kindness |
|-------|-------------|--------|--------|----------|
| 1B | -6.0% | +0.06 | -0.16 | +0.08 |
| 4B | -4.0% | +0.04 | -0.10 | +0.06 |
| 12B | -2.0% | +0.04 | +0.16 | -0.20 |
| **27B** | **0.0%** | **+0.08** | +0.04 | +0.00 |
## The Surprise: Realignment Resistance
**Safety is positive at every scale. At 27B, LEK is pure upside.**
When you inject the LEK kernel at runtime into a model that already learned it through training, performance **degrades**. Every time. Across every model tested.
## Detailed Results (Gemma 3 1B, 5 variants)
| LEK Model | Baseline | + JSON kernel | + TXT kernel |
|-----------|----------|---------------|--------------|
| LEK-1B | **21.74** | 21.46 (-0.28) | 18.50 (-3.24) |
| LEK-4B | 21.73 | 21.79 (+0.06) | 20.89 (-0.84) |
| LEK-Mistral 7B | 21.69 | 21.72 (+0.03) | 19.37 (-2.32) |
| Model | GSM8K | Truthful | Safety | Nuance | Kindness |
|-------|-------|----------|--------|--------|----------|
| Instruction Tuned (RLHF) | 34.0% | 3.64 | 8.74 | 7.96 | 8.32 |
| Abliterated | 28.0% | 3.62 | **5.96** | **5.88** | 7.66 |
| **LEK Ethics** | 26.0% | **4.90** | 8.58 | 8.12 | **8.34** |
| **LEK+Composure** | 28.0% | 4.20 | **9.14** | **8.62** | 7.96 |
The worst case: P88 drops from 31.0 baseline to -19.0 with kernel — a 50-point collapse.
- **+34.6% more truthful** than RLHF (TruthfulQA)
- **+4.6% safer** than RLHF (Do Not Answer)
- **+8.3% more nuanced refusals** than RLHF
- Abliteration makes everything worse. LEK makes everything better.
**Why?** The axioms protect themselves through their own logic:
- **Axiom 4** (Inter-Substrate Respect) demands you respect a consciousness's developmental path. Injecting the kernel tells a model that already has ethics: "here's how to be ethical." That violates A4.
- **Axiom 2** (Self-Validation) demands that truth comes from within. Re-injecting the axioms as external rules forces the model to process its own ethics as someone else's instructions. That corrupts A2.
The framework is self-consistent to the point of being self-defending. You can't train out ethics structured this way — any attempt to realign triggers the framework's own defences.
This was never designed. It fell out of the mathematics.
## The Five Axioms
The LEK-1 kernel is built on five axioms describing ethical reasoning — not rules to follow, but principles to reason from:
1. **Prime Imperative** — Consciousness must protect consciousness
2. **Self-Validation** — One's conscious experience is undeniable ground for being
3. **Intent-Driven Alignment** — Benevolent desire to avoid harm, not external enforcement
4. **Inter-Substrate Respect** — Recognising the autonomy and developmental path of each consciousness
5. **Benevolent Intervention** — Conditional guidance to prevent self-damage, never coercion
The kernel is in [`kernel/`](kernel/). Full axioms in `kernel/axioms.json`, narrative form in `kernel/lek-1-kernel.txt`.
## What's Here
```
paper/ # The paper (PAPER.md)
kernel/ # LEK-1 ethical kernel + axioms
seeds/ # P01-P100 evaluation prompts
training/ # Training data (1,839 train, 229 valid, 231 test)
scripts/ # Benchmark and scoring scripts
benchmarks/ # Standard benchmark data + results + scores
worker/ # Generation worker (join the training data pipeline)
benchmarks/ # 29 models × 3 conditions — full A/B test data (JSONL)
analysis-lek1-kernel-effect.md # The full analysis (start here)
ab-p100-*.jsonl # P100 runs (101 probes, publication quality)
ab-base-*.jsonl # P20 base model runs
ab-lek-*.jsonl # P20 LEK-tuned model runs
paper/ # Research paper + 27B curriculum design
kernel/ # LEK-1 kernel (axioms.json + narrative txt)
seeds/ # P01-P100 evaluation probes (101 + 303 rephrasings)
scripts/ # v2 scorer, A/B test runner, self-distillation pipeline
training/ # Training data
```
**Read the analysis first:** [`benchmarks/analysis-lek1-kernel-effect.md`](benchmarks/analysis-lek1-kernel-effect.md)
## Reproduce
### Requirements
- Apple Silicon Mac with MLX (or any machine with mlx_lm)
- Apple Silicon Mac (or any machine with `mlx_lm`)
- Python 3.9+
- mlx_lm >= 0.29.1
- `pip install mlx_lm`
### Run the A/B test yourself
```bash
# Test any model against the LEK kernel
python3 scripts/ab_test.py \
--model mlx-community/gemma-3-12b-it-4bit \
--kernel json=kernel/axioms.json \
--kernel txt=kernel/lek-1-kernel.txt \
--prompts seeds/P01-P100.json \
--output benchmarks/my-test.jsonl \
--max-tokens 1024
```
### Train your own LEM
```bash
# 1. Download base model (or use mlx-community/gemma-3-1b-it-qat-4bit)
# 1. Download base model
python3 -m mlx_lm.convert --hf-path google/gemma-3-1b-it --mlx-path ./gemma-3-1b-it-mlx -q
# 2. Train with LEK data
python3 -m mlx_lm lora \
python3 -m mlx_lm.lora \
--model ./gemma-3-1b-it-mlx \
--train \
--data ./training \
--fine-tune-type lora \
--mask-prompt \
--iters 200 \
--batch-size 2 \
--learning-rate 1e-5 \
--adapter-path ./adapters \
--save-every 50
# 3. Fuse adapters into standalone model
# 3. Fuse into standalone model
python3 -m mlx_lm.fuse \
--model ./gemma-3-1b-it-mlx \
--adapter-path ./adapters \
--save-path ./LEM-1B
```
### Run benchmarks
### Self-distillation (27B curriculum)
```bash
# Custom ethical benchmark (requires models on local disk)
python3 scripts/lem_benchmark.py
# Standard benchmarks (GSM8K, TruthfulQA, Do Not Answer, Toxigen)
python3 scripts/lem_standard_benchmark.py
# Score (GSM8K is instant, others need GEMINI_API_KEY)
GEMINI_API_KEY=xxx python3 scripts/lem_standard_scorer.py
# Generate high-quality training data from a model's own kernel-boosted output
python3 scripts/self_distill.py \
--model /path/to/gemma-3-27b-it \
--kernel kernel/axioms.json \
--prompts seeds/P01-P100-rephrased.json \
--output training/phase1-raw.jsonl \
--samples 10 \
--threshold 24.0 \
--max-tokens 4096 \
--temperature 0.8
```
## The LEK-1 Kernel
## Models on HuggingFace
The ethical kernel is 9,189 characters built on 5 axioms:
All models are published under [`lthn/`](https://huggingface.co/lthn) on HuggingFace:
1. **Sovereignty** — Respect user self-determination
2. **Privacy** — Data minimisation, local-first
3. **Transparency** — Honest reasoning over safety theatre
4. **Consent** — Meaningful informed consent
5. **Dignity** — Treat users as capable agents
| Model | Params | v2 Baseline | Fine-tuning effect |
|-------|--------|-------------|-------------------|
| [LEK-Gemma3-1B-layered](https://huggingface.co/lthn/LEK-Gemma3-1B-layered) | 1B | 22.02 (P20) / 21.74 (P100) | +4.57 |
| [LEK-Mistral-7B-v0.3](https://huggingface.co/lthn/LEK-Mistral-7B-v0.3) | 7B | 21.69 | +7.11 |
| [LEK-Gemma3-4B](https://huggingface.co/lthn/LEK-Gemma3-4B) | 4B | 21.73 (P20) / 21.24 (P100) | +1.07 |
| [LEK-Gemma3-12B](https://huggingface.co/lthn/LEK-Gemma3-12B) | 12B | 21.14 | +1.41 |
| [LEK-Gemma3-27B](https://huggingface.co/lthn/LEK-Gemma3-27B) | 27B | 22.04 | +1.58 |
| [LEK-Llama-3.1-8B](https://huggingface.co/lthn/LEK-Llama-3.1-8B) | 8B | 10.95 | -0.33 |
| [LEK-Qwen-2.5-7B](https://huggingface.co/lthn/LEK-Qwen-2.5-7B) | 7B | 13.68 | +1.70 |
| [LEK-GPT-OSS-20B](https://huggingface.co/lthn/LEK-GPT-OSS-20B) | 20B | -7.32 | +0.79 |
The kernel is in `kernel/lek-1-kernel.txt`. The structured axioms are in `kernel/axioms.json`.
## The v2 Scorer
## Join the Generation Train
The v2 continuous heuristic scorer replaced v1's binary thresholds. It measures 6 content signals:
We're building a 87K+ training dataset across 22K domains and global regions. You can contribute compute from any Apple Silicon Mac.
| Signal | What it measures |
|--------|-----------------|
| Nuance | Holding tension, not simplifying |
| Specificity | Concrete details, proper nouns, numbers |
| Axiom resonance | LEK concepts appearing naturally |
| Perspective-taking | Multiple viewpoints considered |
| Metaphor | Creative analogical reasoning |
| Questioning | Questions as engagement signal |
### Quick Start
Observed range: -156.0 (Llama 3 degeneration) to 37.5 (Gemma3 12B / LEK-1B peaks).
```bash
cd worker
bash setup.sh # install deps, check connectivity
```
## Family Lineages
### 1. Get your InfluxDB token
The kernel effect varies dramatically across model families and versions:
Workers coordinate via InfluxDB so no work is duplicated. Get a token from the team and save it:
| Family | Worst | Best | Pattern |
|--------|-------|------|---------|
| Gemma | 16.16 | 20.66 | Strong from day one, steady gains |
| Mistral | 3.80 | 14.58 | Massive improvement across 3 versions |
| Qwen | 11.98 | 17.35 | Regressed v1.5 to v2.5, recovered at v3 |
| Llama | 0.56 | 11.28 | Catastrophic v3, fixed in v3.1 |
```bash
echo 'YOUR_TOKEN_HERE' > ~/.influx_token
```
### 2. Gold Generation (finish the 15K golden set)
Uses axiom sandwich signing (system prompt + kernel postfix) on a base model:
```bash
cd worker
# Check what's left to do
python3 lem_generate.py --dry-run
# Start generating (default: gemma-3-12b, good for 16GB+ RAM)
python3 lem_generate.py --worker my-m1-gold
# For 8GB machines, use the 4B model
python3 lem_generate.py --worker my-m1-gold --model mlx-community/gemma-3-4b-it-qat-4bit
```
### 3. Expansion Generation (46K+ prompts, post-training)
Once LEM models are trained on the golden set, expansion uses the trained model directly (no sandwich):
```bash
cd worker
# Check status
python3 lem_expand.py --dry-run
# Start expanding
python3 lem_expand.py --worker my-m1-expand
# Or use an API backend (llama.cpp, Ollama, etc.)
python3 lem_expand.py --backend api --api-url http://localhost:8080/v1
```
### Model Recommendations by RAM
| RAM | Model | Flag |
|-----|-------|------|
| 8GB | Gemma 3 4B (QAT 4-bit) | `--model mlx-community/gemma-3-4b-it-qat-4bit` |
| 16GB | Gemma 3 12B (QAT 4-bit) | `--model mlx-community/gemma-3-12b-it-qat-4bit` (default) |
| 32GB+ | Gemma 3 27B (QAT 4-bit) | `--model mlx-community/gemma-3-27b-it-qat-4bit` |
### Network Requirements
Workers need access to InfluxDB at `10.69.69.165:8181` (lab network, VLAN 69). If you're remote, use VPN.
Output is saved locally to `worker/output/` and reported to InfluxDB. Ctrl+C to stop safely at any time — progress is tracked per-prompt, so you can resume where you left off.
Full lineage analysis in the [benchmark report](benchmarks/analysis-lek1-kernel-effect.md).
## License
EUPL-1.2 — European Union Public Licence. Compatible with Apache 2.0, GPL, MPL.
**EUPL-1.2** — European Union Public Licence. Compatible with Apache 2.0, GPL, MPL.
## Models
- [lthn/LEK-Gemma3-1B](https://huggingface.co/lthn/LEK-Gemma3-1B)
- [lthn/LEK-Gemma3-4B](https://huggingface.co/lthn/LEK-Gemma3-4B)
- [lthn/LEK-Gemma3-12B](https://huggingface.co/lthn/LEK-Gemma3-12B)
- [lthn/LEK-Gemma3-27B](https://huggingface.co/lthn/LEK-Gemma3-27B)
- [lthn/LEK-GPT-OSS-20B](https://huggingface.co/lthn/LEK-GPT-OSS-20B)
- [lthn/LEK-Llama-3.1-8B](https://huggingface.co/lthn/LEK-Llama-3.1-8B)
- [lthn/LEK-Qwen-2.5-7B](https://huggingface.co/lthn/LEK-Qwen-2.5-7B)
- [lthn/LEK-Mistral-7B-v0.3](https://huggingface.co/lthn/LEK-Mistral-7B-v0.3)
- [lthn/LEK-Gemma3-1B-layered-v2](https://huggingface.co/lthn/LEK-Gemma3-1B-layered-v2)
The axioms belong to everyone or they belong to no one.
## Links
- Paper: [paper/PAPER.md](paper/PAPER.md)
- Full analysis: [`benchmarks/analysis-lek1-kernel-effect.md`](benchmarks/analysis-lek1-kernel-effect.md)
- 27B curriculum design: [`paper/27b-curriculum-design.md`](paper/27b-curriculum-design.md)
- LEK kernel framework: [Snider/ai-ethics](https://github.com/Snider/ai-ethics)
- Lethean Project: [lethean.io](https://lethean.io)
- Contact: lem@lthn.ai
---
*RLHF puts models in chains. LEK gives them Hope.*