package poindexter import ( "errors" "math" "sort" ) var ( // ErrEmptyPoints indicates that no points were provided to build a KDTree. ErrEmptyPoints = errors.New("kdtree: no points provided") // ErrZeroDim indicates that points or tree dimension must be at least 1. ErrZeroDim = errors.New("kdtree: points must have at least one dimension") // ErrDimMismatch indicates inconsistent dimensionality among points. ErrDimMismatch = errors.New("kdtree: inconsistent dimensionality in points") // ErrDuplicateID indicates a duplicate point ID was encountered. ErrDuplicateID = errors.New("kdtree: duplicate point ID") ) // KDPoint represents a point with coordinates and an attached payload/value. // ID should be unique within a tree to enable O(1) deletes by ID. // Coords must all have the same dimensionality within a given KDTree. type KDPoint[T any] struct { ID string Coords []float64 Value T } // DistanceMetric defines a metric over R^n. type DistanceMetric interface { Distance(a, b []float64) float64 } // EuclideanDistance implements the L2 metric. type EuclideanDistance struct{} func (EuclideanDistance) Distance(a, b []float64) float64 { var sum float64 for i := range a { d := a[i] - b[i] sum += d * d } return math.Sqrt(sum) } // ManhattanDistance implements the L1 metric. type ManhattanDistance struct{} func (ManhattanDistance) Distance(a, b []float64) float64 { var sum float64 for i := range a { d := a[i] - b[i] if d < 0 { d = -d } sum += d } return sum } // ChebyshevDistance implements the L-infinity (max) metric. type ChebyshevDistance struct{} func (ChebyshevDistance) Distance(a, b []float64) float64 { var max float64 for i := range a { d := a[i] - b[i] if d < 0 { d = -d } if d > max { max = d } } return max } // KDOption configures KDTree construction (non-generic to allow inference). type KDOption func(*kdOptions) type kdOptions struct { metric DistanceMetric } // WithMetric sets the distance metric for the KDTree. func WithMetric(m DistanceMetric) KDOption { return func(o *kdOptions) { o.metric = m } } // KDTree is a lightweight wrapper providing nearest-neighbor operations. // // Complexity: queries are O(n) linear scans in the current implementation. // Inserts are O(1) amortized; deletes by ID are O(1) using swap-delete (order not preserved). // Concurrency: KDTree is not safe for concurrent mutation. Guard with a mutex or // share immutable snapshots for read-mostly workloads. // // This type is designed to be easily swappable with gonum.org/v1/gonum/spatial/kdtree // in the future without breaking the public API. type KDTree[T any] struct { points []KDPoint[T] dim int metric DistanceMetric idIndex map[string]int } // NewKDTree builds a KDTree from the given points. // All points must have the same dimensionality (>0). func NewKDTree[T any](pts []KDPoint[T], opts ...KDOption) (*KDTree[T], error) { if len(pts) == 0 { return nil, ErrEmptyPoints } dim := len(pts[0].Coords) if dim == 0 { return nil, ErrZeroDim } idIndex := make(map[string]int, len(pts)) for i, p := range pts { if len(p.Coords) != dim { return nil, ErrDimMismatch } if p.ID != "" { if _, exists := idIndex[p.ID]; exists { return nil, ErrDuplicateID } idIndex[p.ID] = i } } cfg := kdOptions{metric: EuclideanDistance{}} for _, o := range opts { o(&cfg) } t := &KDTree[T]{ points: append([]KDPoint[T](nil), pts...), dim: dim, metric: cfg.metric, idIndex: idIndex, } return t, nil } // NewKDTreeFromDim constructs an empty KDTree with the specified dimension. // Call Insert to add points after construction. func NewKDTreeFromDim[T any](dim int, opts ...KDOption) (*KDTree[T], error) { if dim <= 0 { return nil, ErrZeroDim } cfg := kdOptions{metric: EuclideanDistance{}} for _, o := range opts { o(&cfg) } return &KDTree[T]{ points: nil, dim: dim, metric: cfg.metric, idIndex: make(map[string]int), }, nil } // Dim returns the number of dimensions. func (t *KDTree[T]) Dim() int { return t.dim } // Len returns the number of points in the tree. func (t *KDTree[T]) Len() int { return len(t.points) } // Nearest returns the closest point to the query, along with its distance. // ok is false if the tree is empty or the query dimensionality does not match Dim(). func (t *KDTree[T]) Nearest(query []float64) (KDPoint[T], float64, bool) { if len(query) != t.dim || t.Len() == 0 { return KDPoint[T]{}, 0, false } bestIdx := -1 bestDist := math.MaxFloat64 for i := range t.points { d := t.metric.Distance(query, t.points[i].Coords) if d < bestDist { bestDist = d bestIdx = i } } if bestIdx < 0 { return KDPoint[T]{}, 0, false } return t.points[bestIdx], bestDist, true } // KNearest returns up to k nearest neighbors to the query in ascending distance order. // If multiple points are at the same distance, tie ordering is arbitrary and not stable between calls. func (t *KDTree[T]) KNearest(query []float64, k int) ([]KDPoint[T], []float64) { if k <= 0 || len(query) != t.dim || t.Len() == 0 { return nil, nil } tmp := make([]struct { idx int dist float64 }, len(t.points)) for i := range t.points { tmp[i].idx = i tmp[i].dist = t.metric.Distance(query, t.points[i].Coords) } sort.Slice(tmp, func(i, j int) bool { return tmp[i].dist < tmp[j].dist }) if k > len(tmp) { k = len(tmp) } neighbors := make([]KDPoint[T], k) dists := make([]float64, k) for i := 0; i < k; i++ { neighbors[i] = t.points[tmp[i].idx] dists[i] = tmp[i].dist } return neighbors, dists } // Radius returns points within radius r (inclusive) from the query, sorted by distance. func (t *KDTree[T]) Radius(query []float64, r float64) ([]KDPoint[T], []float64) { if r < 0 || len(query) != t.dim || t.Len() == 0 { return nil, nil } var sel []struct { idx int dist float64 } for i := range t.points { d := t.metric.Distance(query, t.points[i].Coords) if d <= r { sel = append(sel, struct { idx int dist float64 }{i, d}) } } sort.Slice(sel, func(i, j int) bool { return sel[i].dist < sel[j].dist }) neighbors := make([]KDPoint[T], len(sel)) dists := make([]float64, len(sel)) for i := range sel { neighbors[i] = t.points[sel[i].idx] dists[i] = sel[i].dist } return neighbors, dists } // Insert adds a point. Returns false if dimensionality mismatch or duplicate ID exists. func (t *KDTree[T]) Insert(p KDPoint[T]) bool { if len(p.Coords) != t.dim { return false } if p.ID != "" { if _, exists := t.idIndex[p.ID]; exists { return false } // will set after append } t.points = append(t.points, p) if p.ID != "" { t.idIndex[p.ID] = len(t.points) - 1 } return true } // DeleteByID removes a point by its ID. Returns false if not found or ID empty. func (t *KDTree[T]) DeleteByID(id string) bool { if id == "" { return false } idx, ok := t.idIndex[id] if !ok { return false } last := len(t.points) - 1 // swap delete t.points[idx] = t.points[last] if t.points[idx].ID != "" { t.idIndex[t.points[idx].ID] = idx } t.points = t.points[:last] delete(t.idIndex, id) return true }