Poindexter/kdtree.go
google-labs-jules[bot] 93b41ed07e feat: Refactor kdtree_analytics.go and create API audit
Decomposed the "God Class" `kdtree_analytics.go` into three distinct files:
- `kdtree_analytics.go`: Core tree analytics
- `peer_trust.go`: Peer trust scoring logic
- `nat_metrics.go`: NAT-related metrics

Renamed `ComputeDistanceDistribution` to `ComputeAxisDistributions` for clarity.

Created `AUDIT-API.md` to document the findings and changes.

Co-authored-by: Snider <631881+Snider@users.noreply.github.com>
2026-02-02 01:23:25 +00:00

593 lines
16 KiB
Go

package poindexter
import (
"errors"
"math"
"sort"
"time"
)
var (
// ErrEmptyPoints indicates that no points were provided to build a KDTree.
ErrEmptyPoints = errors.New("kdtree: no points provided")
// ErrZeroDim indicates that points or tree dimension must be at least 1.
ErrZeroDim = errors.New("kdtree: points must have at least one dimension")
// ErrDimMismatch indicates inconsistent dimensionality among points.
ErrDimMismatch = errors.New("kdtree: inconsistent dimensionality in points")
// ErrDuplicateID indicates a duplicate point ID was encountered.
ErrDuplicateID = errors.New("kdtree: duplicate point ID")
// ErrBackendUnavailable indicates that a requested backend cannot be used (e.g., not built/tagged).
ErrBackendUnavailable = errors.New("kdtree: requested backend unavailable")
)
// KDPoint represents a point with coordinates and an attached payload/value.
// ID should be unique within a tree to enable O(1) deletes by ID.
// Coords must all have the same dimensionality within a given KDTree.
type KDPoint[T any] struct {
ID string
Coords []float64
Value T
}
// DistanceMetric defines a metric over R^n.
type DistanceMetric interface {
Distance(a, b []float64) float64
}
// EuclideanDistance implements the L2 metric.
type EuclideanDistance struct{}
func (EuclideanDistance) Distance(a, b []float64) float64 {
var sum float64
for i := range a {
d := a[i] - b[i]
sum += d * d
}
return math.Sqrt(sum)
}
// ManhattanDistance implements the L1 metric.
type ManhattanDistance struct{}
func (ManhattanDistance) Distance(a, b []float64) float64 {
var sum float64
for i := range a {
d := a[i] - b[i]
if d < 0 {
d = -d
}
sum += d
}
return sum
}
// ChebyshevDistance implements the L-infinity (max) metric.
type ChebyshevDistance struct{}
func (ChebyshevDistance) Distance(a, b []float64) float64 {
var max float64
for i := range a {
d := a[i] - b[i]
if d < 0 {
d = -d
}
if d > max {
max = d
}
}
return max
}
// CosineDistance implements 1 - cosine similarity.
//
// Distance is defined as 1 - (a·b)/(||a||*||b||). If both vectors are zero,
// distance is 0. If exactly one is zero, distance is 1. Numerical results are
// clamped to [0,2].
// Note: For typical normalized/weighted feature vectors with non-negative entries,
// the value will be in [0,1]. Opposite vectors in general spaces can yield up to 2.
type CosineDistance struct{}
func (CosineDistance) Distance(a, b []float64) float64 {
var dot, na2, nb2 float64
for i := range a {
ai := a[i]
bi := b[i]
dot += ai * bi
na2 += ai * ai
nb2 += bi * bi
}
if na2 == 0 && nb2 == 0 {
return 0
}
if na2 == 0 || nb2 == 0 {
return 1
}
den := math.Sqrt(na2) * math.Sqrt(nb2)
if den == 0 { // guard, though covered above
return 1
}
cos := dot / den
if cos > 1 {
cos = 1
} else if cos < -1 {
cos = -1
}
d := 1 - cos
if d < 0 {
return 0
}
if d > 2 {
return 2
}
return d
}
// WeightedCosineDistance implements 1 - weighted cosine similarity, where weights
// scale each axis in both the dot product and the norms.
// If Weights is nil or has zero length, this reduces to CosineDistance.
type WeightedCosineDistance struct{ Weights []float64 }
func (wcd WeightedCosineDistance) Distance(a, b []float64) float64 {
w := wcd.Weights
if len(w) == 0 || len(w) != len(a) || len(a) != len(b) {
// Fallback to unweighted cosine when lengths mismatch or weights missing.
return CosineDistance{}.Distance(a, b)
}
var dot, na2, nb2 float64
for i := range a {
wi := w[i]
ai := a[i]
bi := b[i]
v := wi * ai
dot += v * bi // wi*ai*bi
na2 += v * ai // wi*ai*ai
nb2 += (wi * bi) * bi // wi*bi*bi
}
if na2 == 0 && nb2 == 0 {
return 0
}
if na2 == 0 || nb2 == 0 {
return 1
}
den := math.Sqrt(na2) * math.Sqrt(nb2)
if den == 0 {
return 1
}
cos := dot / den
if cos > 1 {
cos = 1
} else if cos < -1 {
cos = -1
}
d := 1 - cos
if d < 0 {
return 0
}
if d > 2 {
return 2
}
return d
}
// KDOption configures KDTree construction (non-generic to allow inference).
type KDOption func(*kdOptions)
type kdOptions struct {
metric DistanceMetric
backend KDBackend
}
// defaultBackend returns the implicit backend depending on build tags.
// If built with the "gonum" tag, prefer the Gonum backend by default to keep
// code paths simple and performant; otherwise fall back to the linear backend.
func defaultBackend() KDBackend {
if hasGonum() {
return BackendGonum
}
return BackendLinear
}
// KDBackend selects the internal engine used by KDTree.
type KDBackend string
const (
BackendLinear KDBackend = "linear"
BackendGonum KDBackend = "gonum"
)
// WithMetric sets the distance metric for the KDTree.
func WithMetric(m DistanceMetric) KDOption { return func(o *kdOptions) { o.metric = m } }
// WithBackend selects the internal KDTree backend ("linear" or "gonum").
// Default is linear. If the requested backend is unavailable (e.g., gonum build tag not enabled),
// the constructor will silently fall back to the linear backend.
func WithBackend(b KDBackend) KDOption { return func(o *kdOptions) { o.backend = b } }
// KDTree is a lightweight wrapper providing nearest-neighbor operations.
//
// Complexity: queries are O(n) linear scans in the current implementation.
// Inserts are O(1) amortized; deletes by ID are O(1) using swap-delete (order not preserved).
// Concurrency: KDTree is not safe for concurrent mutation. Guard with a mutex or
// share immutable snapshots for read-mostly workloads.
//
// This type is designed to be easily swappable with gonum.org/v1/gonum/spatial/kdtree
// in the future without breaking the public API.
type KDTree[T any] struct {
points []KDPoint[T]
dim int
metric DistanceMetric
idIndex map[string]int
backend KDBackend
backendData any // opaque handle for backend-specific structures (e.g., gonum tree)
// Analytics tracking (optional, enabled by default)
analytics *TreeAnalytics
peerAnalytics *PeerAnalytics
}
// NewKDTree builds a KDTree from the given points.
// All points must have the same dimensionality (>0).
func NewKDTree[T any](pts []KDPoint[T], opts ...KDOption) (*KDTree[T], error) {
if len(pts) == 0 {
return nil, ErrEmptyPoints
}
dim := len(pts[0].Coords)
if dim == 0 {
return nil, ErrZeroDim
}
idIndex := make(map[string]int, len(pts))
for i, p := range pts {
if len(p.Coords) != dim {
return nil, ErrDimMismatch
}
if p.ID != "" {
if _, exists := idIndex[p.ID]; exists {
return nil, ErrDuplicateID
}
idIndex[p.ID] = i
}
}
cfg := kdOptions{metric: EuclideanDistance{}, backend: defaultBackend()}
for _, o := range opts {
o(&cfg)
}
backend := cfg.backend
var backendData any
// Attempt to build gonum backend if requested and available.
if backend == BackendGonum && hasGonum() {
if bd, err := buildGonumBackend(pts, cfg.metric); err == nil {
backendData = bd
} else {
backend = BackendLinear // fallback gracefully
}
} else if backend == BackendGonum && !hasGonum() {
backend = BackendLinear // tag not enabled → fallback
}
t := &KDTree[T]{
points: append([]KDPoint[T](nil), pts...),
dim: dim,
metric: cfg.metric,
idIndex: idIndex,
backend: backend,
backendData: backendData,
analytics: NewTreeAnalytics(),
peerAnalytics: NewPeerAnalytics(),
}
return t, nil
}
// NewKDTreeFromDim constructs an empty KDTree with the specified dimension.
// Call Insert to add points after construction.
func NewKDTreeFromDim[T any](dim int, opts ...KDOption) (*KDTree[T], error) {
if dim <= 0 {
return nil, ErrZeroDim
}
cfg := kdOptions{metric: EuclideanDistance{}, backend: defaultBackend()}
for _, o := range opts {
o(&cfg)
}
backend := cfg.backend
if backend == BackendGonum && !hasGonum() {
backend = BackendLinear
}
return &KDTree[T]{
points: nil,
dim: dim,
metric: cfg.metric,
idIndex: make(map[string]int),
backend: backend,
backendData: nil,
analytics: NewTreeAnalytics(),
peerAnalytics: NewPeerAnalytics(),
}, nil
}
// Dim returns the number of dimensions.
func (t *KDTree[T]) Dim() int { return t.dim }
// Len returns the number of points in the tree.
func (t *KDTree[T]) Len() int { return len(t.points) }
// Nearest returns the closest point to the query, along with its distance.
// ok is false if the tree is empty or the query dimensionality does not match Dim().
func (t *KDTree[T]) Nearest(query []float64) (KDPoint[T], float64, bool) {
if len(query) != t.dim || t.Len() == 0 {
return KDPoint[T]{}, 0, false
}
start := time.Now()
defer func() {
if t.analytics != nil {
t.analytics.RecordQuery(time.Since(start).Nanoseconds())
}
}()
// Gonum backend (if available and built)
if t.backend == BackendGonum && t.backendData != nil {
if idx, dist, ok := gonumNearest[T](t.backendData, query); ok && idx >= 0 && idx < len(t.points) {
p := t.points[idx]
if t.peerAnalytics != nil {
t.peerAnalytics.RecordSelection(p.ID, dist)
}
return p, dist, true
}
// fall through to linear scan if backend didn't return a result
}
bestIdx := -1
bestDist := math.MaxFloat64
for i := range t.points {
d := t.metric.Distance(query, t.points[i].Coords)
if d < bestDist {
bestDist = d
bestIdx = i
}
}
if bestIdx < 0 {
return KDPoint[T]{}, 0, false
}
p := t.points[bestIdx]
if t.peerAnalytics != nil {
t.peerAnalytics.RecordSelection(p.ID, bestDist)
}
return p, bestDist, true
}
// KNearest returns up to k nearest neighbors to the query in ascending distance order.
// If multiple points are at the same distance, tie ordering is arbitrary and not stable between calls.
func (t *KDTree[T]) KNearest(query []float64, k int) ([]KDPoint[T], []float64) {
if k <= 0 || len(query) != t.dim || t.Len() == 0 {
return nil, nil
}
start := time.Now()
defer func() {
if t.analytics != nil {
t.analytics.RecordQuery(time.Since(start).Nanoseconds())
}
}()
// Gonum backend path
if t.backend == BackendGonum && t.backendData != nil {
idxs, dists := gonumKNearest[T](t.backendData, query, k)
if len(idxs) > 0 {
neighbors := make([]KDPoint[T], len(idxs))
for i := range idxs {
neighbors[i] = t.points[idxs[i]]
if t.peerAnalytics != nil {
t.peerAnalytics.RecordSelection(neighbors[i].ID, dists[i])
}
}
return neighbors, dists
}
// fall back on unexpected empty
}
tmp := make([]struct {
idx int
dist float64
}, len(t.points))
for i := range t.points {
tmp[i].idx = i
tmp[i].dist = t.metric.Distance(query, t.points[i].Coords)
}
sort.Slice(tmp, func(i, j int) bool { return tmp[i].dist < tmp[j].dist })
if k > len(tmp) {
k = len(tmp)
}
neighbors := make([]KDPoint[T], k)
dists := make([]float64, k)
for i := 0; i < k; i++ {
neighbors[i] = t.points[tmp[i].idx]
dists[i] = tmp[i].dist
if t.peerAnalytics != nil {
t.peerAnalytics.RecordSelection(neighbors[i].ID, dists[i])
}
}
return neighbors, dists
}
// Radius returns points within radius r (inclusive) from the query, sorted by distance.
func (t *KDTree[T]) Radius(query []float64, r float64) ([]KDPoint[T], []float64) {
if r < 0 || len(query) != t.dim || t.Len() == 0 {
return nil, nil
}
start := time.Now()
defer func() {
if t.analytics != nil {
t.analytics.RecordQuery(time.Since(start).Nanoseconds())
}
}()
// Gonum backend path
if t.backend == BackendGonum && t.backendData != nil {
idxs, dists := gonumRadius[T](t.backendData, query, r)
if len(idxs) > 0 {
neighbors := make([]KDPoint[T], len(idxs))
for i := range idxs {
neighbors[i] = t.points[idxs[i]]
if t.peerAnalytics != nil {
t.peerAnalytics.RecordSelection(neighbors[i].ID, dists[i])
}
}
return neighbors, dists
}
// fall back if no results
}
var sel []struct {
idx int
dist float64
}
for i := range t.points {
d := t.metric.Distance(query, t.points[i].Coords)
if d <= r {
sel = append(sel, struct {
idx int
dist float64
}{i, d})
}
}
sort.Slice(sel, func(i, j int) bool { return sel[i].dist < sel[j].dist })
neighbors := make([]KDPoint[T], len(sel))
dists := make([]float64, len(sel))
for i := range sel {
neighbors[i] = t.points[sel[i].idx]
dists[i] = sel[i].dist
if t.peerAnalytics != nil {
t.peerAnalytics.RecordSelection(neighbors[i].ID, dists[i])
}
}
return neighbors, dists
}
// Insert adds a point. Returns false if dimensionality mismatch or duplicate ID exists.
func (t *KDTree[T]) Insert(p KDPoint[T]) bool {
if len(p.Coords) != t.dim {
return false
}
if p.ID != "" {
if _, exists := t.idIndex[p.ID]; exists {
return false
}
// will set after append
}
t.points = append(t.points, p)
if p.ID != "" {
t.idIndex[p.ID] = len(t.points) - 1
}
// Record insert in analytics
if t.analytics != nil {
t.analytics.RecordInsert()
}
// Rebuild backend if using Gonum
if t.backend == BackendGonum && hasGonum() {
if bd, err := buildGonumBackend(t.points, t.metric); err == nil {
t.backendData = bd
if t.analytics != nil {
t.analytics.RecordRebuild()
}
} else {
// fallback to linear if rebuild fails
t.backend = BackendLinear
t.backendData = nil
}
}
return true
}
// DeleteByID removes a point by its ID. Returns false if not found or ID empty.
func (t *KDTree[T]) DeleteByID(id string) bool {
if id == "" {
return false
}
idx, ok := t.idIndex[id]
if !ok {
return false
}
last := len(t.points) - 1
// swap delete
t.points[idx] = t.points[last]
if t.points[idx].ID != "" {
t.idIndex[t.points[idx].ID] = idx
}
t.points = t.points[:last]
delete(t.idIndex, id)
// Record delete in analytics
if t.analytics != nil {
t.analytics.RecordDelete()
}
// Rebuild backend if using Gonum
if t.backend == BackendGonum && hasGonum() {
if bd, err := buildGonumBackend(t.points, t.metric); err == nil {
t.backendData = bd
if t.analytics != nil {
t.analytics.RecordRebuild()
}
} else {
// fallback to linear if rebuild fails
t.backend = BackendLinear
t.backendData = nil
}
}
return true
}
// Analytics returns the tree analytics tracker.
// Returns nil if analytics tracking is disabled.
func (t *KDTree[T]) Analytics() *TreeAnalytics {
return t.analytics
}
// PeerAnalytics returns the peer analytics tracker.
// Returns nil if peer analytics tracking is disabled.
func (t *KDTree[T]) PeerAnalytics() *PeerAnalytics {
return t.peerAnalytics
}
// GetAnalyticsSnapshot returns a point-in-time snapshot of tree analytics.
func (t *KDTree[T]) GetAnalyticsSnapshot() TreeAnalyticsSnapshot {
if t.analytics == nil {
return TreeAnalyticsSnapshot{}
}
return t.analytics.Snapshot()
}
// GetPeerStats returns per-peer selection statistics.
func (t *KDTree[T]) GetPeerStats() []PeerStats {
if t.peerAnalytics == nil {
return nil
}
return t.peerAnalytics.GetAllPeerStats()
}
// GetTopPeers returns the top N most frequently selected peers.
func (t *KDTree[T]) GetTopPeers(n int) []PeerStats {
if t.peerAnalytics == nil {
return nil
}
return t.peerAnalytics.GetTopPeers(n)
}
// ComputeAxisDistributions analyzes the distribution of current point coordinates.
func (t *KDTree[T]) ComputeAxisDistributions(axisNames []string) []AxisDistribution {
return ComputeAxisDistributions(t.points, axisNames)
}
// ResetAnalytics clears all analytics data.
func (t *KDTree[T]) ResetAnalytics() {
if t.analytics != nil {
t.analytics.Reset()
}
if t.peerAnalytics != nil {
t.peerAnalytics.Reset()
}
}
// Points returns a copy of all points in the tree.
// This is useful for analytics and export operations.
func (t *KDTree[T]) Points() []KDPoint[T] {
result := make([]KDPoint[T], len(t.points))
copy(result, t.points)
return result
}
// Backend returns the active backend type.
func (t *KDTree[T]) Backend() KDBackend {
return t.backend
}