Poindexter/kdtree_helpers.go

448 lines
12 KiB
Go
Raw Normal View History

package poindexter
import "errors"
// Helper builders for KDTree points with min-max normalisation, optional inversion per-axis,
// and per-axis weights. These are convenience utilities to make it easy to map domain
// records into KD space for 2D/3D/4D use-cases.
// Errors for helper builders.
var (
// ErrInvalidFeatures indicates that no features were provided or nil feature encountered.
ErrInvalidFeatures = errors.New("kdtree: invalid features: provide at least one feature and ensure none are nil")
// ErrInvalidWeights indicates weights length doesn't match features length.
ErrInvalidWeights = errors.New("kdtree: invalid weights length; must match number of features")
// ErrInvalidInvert indicates invert flags length doesn't match features length.
ErrInvalidInvert = errors.New("kdtree: invalid invert length; must match number of features")
// ErrStatsDimMismatch indicates NormStats dimensions do not match features length.
ErrStatsDimMismatch = errors.New("kdtree: stats dimensionality mismatch")
)
// AxisStats holds the min/max observed for a single axis.
type AxisStats struct {
Min float64
Max float64
}
// NormStats holds per-axis normalisation statistics.
// For D dimensions, Stats has length D.
type NormStats struct {
Stats []AxisStats
}
// ComputeNormStatsND computes per-axis min/max for an arbitrary number of features.
func ComputeNormStatsND[T any](items []T, features []func(T) float64) (NormStats, error) {
if len(features) == 0 {
return NormStats{}, ErrInvalidFeatures
}
// Initialise mins/maxes on first item where possible
stats := make([]AxisStats, len(features))
if len(items) == 0 {
// empty items → zero stats slice of correct dim
return NormStats{Stats: stats}, nil
}
// Seed with first item values
first := items[0]
for i, f := range features {
if f == nil {
return NormStats{}, ErrInvalidFeatures
}
v := f(first)
stats[i] = AxisStats{Min: v, Max: v}
}
// Process remaining items
for _, it := range items[1:] {
for i, f := range features {
v := f(it)
if v < stats[i].Min {
stats[i].Min = v
}
if v > stats[i].Max {
stats[i].Max = v
}
}
}
return NormStats{Stats: stats}, nil
}
// BuildND constructs normalised-and-weighted KD points from arbitrary amount features.
// Features are min-max normalised per axis over the provided items, optionally inverted,
// then multiplied by per-axis weights.
func BuildND[T any](items []T, id func(T) string, features []func(T) float64, weights []float64, invert []bool) ([]KDPoint[T], error) {
if len(items) == 0 {
return nil, nil
}
if len(features) == 0 {
return nil, ErrInvalidFeatures
}
if len(weights) != len(features) {
return nil, ErrInvalidWeights
}
if len(invert) != len(features) {
return nil, ErrInvalidInvert
}
stats, err := ComputeNormStatsND(items, features)
if err != nil {
return nil, err
}
return BuildNDWithStats(items, id, features, weights, invert, stats)
}
// BuildNDNoErr constructs normalized-and-weighted KD points like BuildND but never returns an error.
// It performs no input validation beyond basic length checks and will propagate NaN/Inf values
// from feature extractors into the resulting coordinates. Use when you control inputs and want a
// simpler call signature.
func BuildNDNoErr[T any](items []T, id func(T) string, features []func(T) float64, weights []float64, invert []bool) []KDPoint[T] {
if len(items) == 0 || len(features) == 0 {
return nil
}
// If lengths are inconsistent, return empty (no panic); this function is intentionally lenient.
if len(weights) != len(features) || len(invert) != len(features) {
return nil
}
stats, _ := ComputeNormStatsND(items, features)
pts, _ := BuildNDWithStats(items, id, features, weights, invert, stats)
return pts
}
// BuildNDWithStats builds points using provided normalisation stats.
func BuildNDWithStats[T any](items []T, id func(T) string, features []func(T) float64, weights []float64, invert []bool, stats NormStats) ([]KDPoint[T], error) {
if len(items) == 0 {
return nil, nil
}
if len(features) == 0 {
return nil, ErrInvalidFeatures
}
if len(weights) != len(features) {
return nil, ErrInvalidWeights
}
if len(invert) != len(features) {
return nil, ErrInvalidInvert
}
if len(stats.Stats) != len(features) {
return nil, ErrStatsDimMismatch
}
pts := make([]KDPoint[T], len(items))
for i, it := range items {
coords := make([]float64, len(features))
for d, f := range features {
if f == nil {
return nil, ErrInvalidFeatures
}
n := scale01(f(it), stats.Stats[d].Min, stats.Stats[d].Max)
if invert[d] {
n = 1 - n
}
coords[d] = weights[d] * n
}
var pid string
if id != nil {
pid = id(it)
}
pts[i] = KDPoint[T]{ID: pid, Value: it, Coords: coords}
}
return pts, nil
}
// minMax returns (min,max) of a slice.
func minMax(xs []float64) (float64, float64) {
if len(xs) == 0 {
return 0, 0
}
mn, mx := xs[0], xs[0]
for _, v := range xs[1:] {
if v < mn {
mn = v
}
if v > mx {
mx = v
}
}
return mn, mx
}
// scale01 maps v from [min,max] to [0,1]. If min==max, returns 0.
func scale01(v, min, max float64) float64 {
if max == min {
return 0
}
return (v - min) / (max - min)
}
// ComputeNormStats2D computes per-axis min/max for two features.
func ComputeNormStats2D[T any](items []T, f1, f2 func(T) float64) NormStats {
vals1 := make([]float64, len(items))
vals2 := make([]float64, len(items))
for i, it := range items {
vals1[i] = f1(it)
vals2[i] = f2(it)
}
mn1, mx1 := minMax(vals1)
mn2, mx2 := minMax(vals2)
return NormStats{Stats: []AxisStats{{mn1, mx1}, {mn2, mx2}}}
}
// ComputeNormStats3D computes per-axis min/max for three features.
func ComputeNormStats3D[T any](items []T, f1, f2, f3 func(T) float64) NormStats {
vals1 := make([]float64, len(items))
vals2 := make([]float64, len(items))
vals3 := make([]float64, len(items))
for i, it := range items {
vals1[i] = f1(it)
vals2[i] = f2(it)
vals3[i] = f3(it)
}
mn1, mx1 := minMax(vals1)
mn2, mx2 := minMax(vals2)
mn3, mx3 := minMax(vals3)
return NormStats{Stats: []AxisStats{{mn1, mx1}, {mn2, mx2}, {mn3, mx3}}}
}
// ComputeNormStats4D computes per-axis min/max for four features.
func ComputeNormStats4D[T any](items []T, f1, f2, f3, f4 func(T) float64) NormStats {
vals1 := make([]float64, len(items))
vals2 := make([]float64, len(items))
vals3 := make([]float64, len(items))
vals4 := make([]float64, len(items))
for i, it := range items {
vals1[i] = f1(it)
vals2[i] = f2(it)
vals3[i] = f3(it)
vals4[i] = f4(it)
}
mn1, mx1 := minMax(vals1)
mn2, mx2 := minMax(vals2)
mn3, mx3 := minMax(vals3)
mn4, mx4 := minMax(vals4)
return NormStats{Stats: []AxisStats{{mn1, mx1}, {mn2, mx2}, {mn3, mx3}, {mn4, mx4}}}
}
// Build2D constructs normalised-and-weighted KD points from items using two feature extractors.
// - id: function to provide a stable string ID (can return "" if you don't need DeleteByID)
// - f1,f2: feature extractors (raw values)
// - weights: per-axis weights applied after normalization
// - invert: per-axis flags; if true, the axis is inverted (1-norm) so that higher raw values become lower cost
func Build2D[T any](items []T, id func(T) string, f1, f2 func(T) float64, weights [2]float64, invert [2]bool) ([]KDPoint[T], error) {
if len(items) == 0 {
return nil, nil
}
vals1 := make([]float64, len(items))
vals2 := make([]float64, len(items))
for i, it := range items {
vals1[i] = f1(it)
vals2[i] = f2(it)
}
mn1, mx1 := minMax(vals1)
mn2, mx2 := minMax(vals2)
pts := make([]KDPoint[T], len(items))
for i, it := range items {
n1 := scale01(vals1[i], mn1, mx1)
n2 := scale01(vals2[i], mn2, mx2)
if invert[0] {
n1 = 1 - n1
}
if invert[1] {
n2 = 1 - n2
}
pts[i] = KDPoint[T]{
ID: id(it),
Value: it,
Coords: []float64{
weights[0] * n1,
weights[1] * n2,
},
}
}
return pts, nil
}
// Build2DWithStats builds points using provided normalisation stats.
func Build2DWithStats[T any](items []T, id func(T) string, f1, f2 func(T) float64, weights [2]float64, invert [2]bool, stats NormStats) ([]KDPoint[T], error) {
if len(items) == 0 {
return nil, nil
}
if len(stats.Stats) != 2 {
return nil, ErrStatsDimMismatch
}
pts := make([]KDPoint[T], len(items))
for i, it := range items {
n1 := scale01(f1(it), stats.Stats[0].Min, stats.Stats[0].Max)
n2 := scale01(f2(it), stats.Stats[1].Min, stats.Stats[1].Max)
if invert[0] {
n1 = 1 - n1
}
if invert[1] {
n2 = 1 - n2
}
pts[i] = KDPoint[T]{
ID: id(it),
Value: it,
Coords: []float64{weights[0] * n1, weights[1] * n2},
}
}
return pts, nil
}
// Build3D constructs normalised-and-weighted KD points using three feature extractors.
func Build3D[T any](items []T, id func(T) string, f1, f2, f3 func(T) float64, weights [3]float64, invert [3]bool) ([]KDPoint[T], error) {
if len(items) == 0 {
return nil, nil
}
vals1 := make([]float64, len(items))
vals2 := make([]float64, len(items))
vals3 := make([]float64, len(items))
for i, it := range items {
vals1[i] = f1(it)
vals2[i] = f2(it)
vals3[i] = f3(it)
}
mn1, mx1 := minMax(vals1)
mn2, mx2 := minMax(vals2)
mn3, mx3 := minMax(vals3)
pts := make([]KDPoint[T], len(items))
for i, it := range items {
n1 := scale01(vals1[i], mn1, mx1)
n2 := scale01(vals2[i], mn2, mx2)
n3 := scale01(vals3[i], mn3, mx3)
if invert[0] {
n1 = 1 - n1
}
if invert[1] {
n2 = 1 - n2
}
if invert[2] {
n3 = 1 - n3
}
pts[i] = KDPoint[T]{
ID: id(it),
Value: it,
Coords: []float64{
weights[0] * n1,
weights[1] * n2,
weights[2] * n3,
},
}
}
return pts, nil
}
// Build3DWithStats builds points using provided normalisation stats.
func Build3DWithStats[T any](items []T, id func(T) string, f1, f2, f3 func(T) float64, weights [3]float64, invert [3]bool, stats NormStats) ([]KDPoint[T], error) {
if len(items) == 0 {
return nil, nil
}
if len(stats.Stats) != 3 {
return nil, ErrStatsDimMismatch
}
pts := make([]KDPoint[T], len(items))
for i, it := range items {
n1 := scale01(f1(it), stats.Stats[0].Min, stats.Stats[0].Max)
n2 := scale01(f2(it), stats.Stats[1].Min, stats.Stats[1].Max)
n3 := scale01(f3(it), stats.Stats[2].Min, stats.Stats[2].Max)
if invert[0] {
n1 = 1 - n1
}
if invert[1] {
n2 = 1 - n2
}
if invert[2] {
n3 = 1 - n3
}
pts[i] = KDPoint[T]{
ID: id(it),
Value: it,
Coords: []float64{weights[0] * n1, weights[1] * n2, weights[2] * n3},
}
}
return pts, nil
}
// Build4D constructs normalised-and-weighted KD points using four feature extractors.
func Build4D[T any](items []T, id func(T) string, f1, f2, f3, f4 func(T) float64, weights [4]float64, invert [4]bool) ([]KDPoint[T], error) {
if len(items) == 0 {
return nil, nil
}
vals1 := make([]float64, len(items))
vals2 := make([]float64, len(items))
vals3 := make([]float64, len(items))
vals4 := make([]float64, len(items))
for i, it := range items {
vals1[i] = f1(it)
vals2[i] = f2(it)
vals3[i] = f3(it)
vals4[i] = f4(it)
}
mn1, mx1 := minMax(vals1)
mn2, mx2 := minMax(vals2)
mn3, mx3 := minMax(vals3)
mn4, mx4 := minMax(vals4)
pts := make([]KDPoint[T], len(items))
for i, it := range items {
n1 := scale01(vals1[i], mn1, mx1)
n2 := scale01(vals2[i], mn2, mx2)
n3 := scale01(vals3[i], mn3, mx3)
n4 := scale01(vals4[i], mn4, mx4)
if invert[0] {
n1 = 1 - n1
}
if invert[1] {
n2 = 1 - n2
}
if invert[2] {
n3 = 1 - n3
}
if invert[3] {
n4 = 1 - n4
}
pts[i] = KDPoint[T]{
ID: id(it),
Value: it,
Coords: []float64{
weights[0] * n1,
weights[1] * n2,
weights[2] * n3,
weights[3] * n4,
},
}
}
return pts, nil
}
// Build4DWithStats builds points using provided normalisation stats.
func Build4DWithStats[T any](items []T, id func(T) string, f1, f2, f3, f4 func(T) float64, weights [4]float64, invert [4]bool, stats NormStats) ([]KDPoint[T], error) {
if len(items) == 0 {
return nil, nil
}
if len(stats.Stats) != 4 {
return nil, ErrStatsDimMismatch
}
pts := make([]KDPoint[T], len(items))
for i, it := range items {
n1 := scale01(f1(it), stats.Stats[0].Min, stats.Stats[0].Max)
n2 := scale01(f2(it), stats.Stats[1].Min, stats.Stats[1].Max)
n3 := scale01(f3(it), stats.Stats[2].Min, stats.Stats[2].Max)
n4 := scale01(f4(it), stats.Stats[3].Min, stats.Stats[3].Max)
if invert[0] {
n1 = 1 - n1
}
if invert[1] {
n2 = 1 - n2
}
if invert[2] {
n3 = 1 - n3
}
if invert[3] {
n4 = 1 - n4
}
pts[i] = KDPoint[T]{
ID: id(it),
Value: it,
Coords: []float64{weights[0] * n1, weights[1] * n2, weights[2] * n3, weights[3] * n4},
}
}
return pts, nil
}