forked from Snider/Poindexter
465 lines
12 KiB
Go
465 lines
12 KiB
Go
package poindexter
|
||
|
||
import (
|
||
"errors"
|
||
"math"
|
||
"sort"
|
||
)
|
||
|
||
var (
|
||
// ErrEmptyPoints indicates that no points were provided to build a KDTree.
|
||
ErrEmptyPoints = errors.New("kdtree: no points provided")
|
||
// ErrZeroDim indicates that points or tree dimension must be at least 1.
|
||
ErrZeroDim = errors.New("kdtree: points must have at least one dimension")
|
||
// ErrDimMismatch indicates inconsistent dimensionality among points.
|
||
ErrDimMismatch = errors.New("kdtree: inconsistent dimensionality in points")
|
||
// ErrDuplicateID indicates a duplicate point ID was encountered.
|
||
ErrDuplicateID = errors.New("kdtree: duplicate point ID")
|
||
// ErrBackendUnavailable indicates that a requested backend cannot be used (e.g., not built/tagged).
|
||
ErrBackendUnavailable = errors.New("kdtree: requested backend unavailable")
|
||
)
|
||
|
||
// KDPoint represents a point with coordinates and an attached payload/value.
|
||
// ID should be unique within a tree to enable O(1) deletes by ID.
|
||
// Coords must all have the same dimensionality within a given KDTree.
|
||
type KDPoint[T any] struct {
|
||
ID string
|
||
Coords []float64
|
||
Value T
|
||
}
|
||
|
||
// DistanceMetric defines a metric over R^n.
|
||
type DistanceMetric interface {
|
||
Distance(a, b []float64) float64
|
||
}
|
||
|
||
// EuclideanDistance implements the L2 metric.
|
||
type EuclideanDistance struct{}
|
||
|
||
func (EuclideanDistance) Distance(a, b []float64) float64 {
|
||
var sum float64
|
||
for i := range a {
|
||
d := a[i] - b[i]
|
||
sum += d * d
|
||
}
|
||
return math.Sqrt(sum)
|
||
}
|
||
|
||
// ManhattanDistance implements the L1 metric.
|
||
type ManhattanDistance struct{}
|
||
|
||
func (ManhattanDistance) Distance(a, b []float64) float64 {
|
||
var sum float64
|
||
for i := range a {
|
||
d := a[i] - b[i]
|
||
if d < 0 {
|
||
d = -d
|
||
}
|
||
sum += d
|
||
}
|
||
return sum
|
||
}
|
||
|
||
// ChebyshevDistance implements the L-infinity (max) metric.
|
||
type ChebyshevDistance struct{}
|
||
|
||
func (ChebyshevDistance) Distance(a, b []float64) float64 {
|
||
var max float64
|
||
for i := range a {
|
||
d := a[i] - b[i]
|
||
if d < 0 {
|
||
d = -d
|
||
}
|
||
if d > max {
|
||
max = d
|
||
}
|
||
}
|
||
return max
|
||
}
|
||
|
||
// CosineDistance implements 1 - cosine similarity.
|
||
//
|
||
// Distance is defined as 1 - (a·b)/(||a||*||b||). If both vectors are zero,
|
||
// distance is 0. If exactly one is zero, distance is 1. Numerical results are
|
||
// clamped to [0,2].
|
||
// Note: For typical normalized/weighted feature vectors with non-negative entries,
|
||
// the value will be in [0,1]. Opposite vectors in general spaces can yield up to 2.
|
||
type CosineDistance struct{}
|
||
|
||
func (CosineDistance) Distance(a, b []float64) float64 {
|
||
var dot, na2, nb2 float64
|
||
for i := range a {
|
||
ai := a[i]
|
||
bi := b[i]
|
||
dot += ai * bi
|
||
na2 += ai * ai
|
||
nb2 += bi * bi
|
||
}
|
||
if na2 == 0 && nb2 == 0 {
|
||
return 0
|
||
}
|
||
if na2 == 0 || nb2 == 0 {
|
||
return 1
|
||
}
|
||
den := math.Sqrt(na2) * math.Sqrt(nb2)
|
||
if den == 0 { // guard, though covered above
|
||
return 1
|
||
}
|
||
cos := dot / den
|
||
if cos > 1 {
|
||
cos = 1
|
||
} else if cos < -1 {
|
||
cos = -1
|
||
}
|
||
d := 1 - cos
|
||
if d < 0 {
|
||
return 0
|
||
}
|
||
if d > 2 {
|
||
return 2
|
||
}
|
||
return d
|
||
}
|
||
|
||
// WeightedCosineDistance implements 1 - weighted cosine similarity, where weights
|
||
// scale each axis in both the dot product and the norms.
|
||
// If Weights is nil or has zero length, this reduces to CosineDistance.
|
||
type WeightedCosineDistance struct{ Weights []float64 }
|
||
|
||
func (wcd WeightedCosineDistance) Distance(a, b []float64) float64 {
|
||
w := wcd.Weights
|
||
if len(w) == 0 || len(w) != len(a) || len(a) != len(b) {
|
||
// Fallback to unweighted cosine when lengths mismatch or weights missing.
|
||
return CosineDistance{}.Distance(a, b)
|
||
}
|
||
var dot, na2, nb2 float64
|
||
for i := range a {
|
||
wi := w[i]
|
||
ai := a[i]
|
||
bi := b[i]
|
||
v := wi * ai
|
||
dot += v * bi // wi*ai*bi
|
||
na2 += v * ai // wi*ai*ai
|
||
nb2 += (wi * bi) * bi // wi*bi*bi
|
||
}
|
||
if na2 == 0 && nb2 == 0 {
|
||
return 0
|
||
}
|
||
if na2 == 0 || nb2 == 0 {
|
||
return 1
|
||
}
|
||
den := math.Sqrt(na2) * math.Sqrt(nb2)
|
||
if den == 0 {
|
||
return 1
|
||
}
|
||
cos := dot / den
|
||
if cos > 1 {
|
||
cos = 1
|
||
} else if cos < -1 {
|
||
cos = -1
|
||
}
|
||
d := 1 - cos
|
||
if d < 0 {
|
||
return 0
|
||
}
|
||
if d > 2 {
|
||
return 2
|
||
}
|
||
return d
|
||
}
|
||
|
||
// KDOption configures KDTree construction (non-generic to allow inference).
|
||
type KDOption func(*kdOptions)
|
||
|
||
type kdOptions struct {
|
||
metric DistanceMetric
|
||
backend KDBackend
|
||
}
|
||
|
||
// defaultBackend returns the implicit backend depending on build tags.
|
||
// If built with the "gonum" tag, prefer the Gonum backend by default to keep
|
||
// code paths simple and performant; otherwise fall back to the linear backend.
|
||
func defaultBackend() KDBackend {
|
||
if hasGonum() {
|
||
return BackendGonum
|
||
}
|
||
return BackendLinear
|
||
}
|
||
|
||
// KDBackend selects the internal engine used by KDTree.
|
||
type KDBackend string
|
||
|
||
const (
|
||
BackendLinear KDBackend = "linear"
|
||
BackendGonum KDBackend = "gonum"
|
||
)
|
||
|
||
// WithMetric sets the distance metric for the KDTree.
|
||
func WithMetric(m DistanceMetric) KDOption { return func(o *kdOptions) { o.metric = m } }
|
||
|
||
// WithBackend selects the internal KDTree backend ("linear" or "gonum").
|
||
// Default is linear. If the requested backend is unavailable (e.g., gonum build tag not enabled),
|
||
// the constructor will silently fall back to the linear backend.
|
||
func WithBackend(b KDBackend) KDOption { return func(o *kdOptions) { o.backend = b } }
|
||
|
||
// KDTree is a lightweight wrapper providing nearest-neighbor operations.
|
||
//
|
||
// Complexity: queries are O(n) linear scans in the current implementation.
|
||
// Inserts are O(1) amortized; deletes by ID are O(1) using swap-delete (order not preserved).
|
||
// Concurrency: KDTree is not safe for concurrent mutation. Guard with a mutex or
|
||
// share immutable snapshots for read-mostly workloads.
|
||
//
|
||
// This type is designed to be easily swappable with gonum.org/v1/gonum/spatial/kdtree
|
||
// in the future without breaking the public API.
|
||
type KDTree[T any] struct {
|
||
points []KDPoint[T]
|
||
dim int
|
||
metric DistanceMetric
|
||
idIndex map[string]int
|
||
backend KDBackend
|
||
backendData any // opaque handle for backend-specific structures (e.g., gonum tree)
|
||
}
|
||
|
||
// NewKDTree builds a KDTree from the given points.
|
||
// All points must have the same dimensionality (>0).
|
||
func NewKDTree[T any](pts []KDPoint[T], opts ...KDOption) (*KDTree[T], error) {
|
||
if len(pts) == 0 {
|
||
return nil, ErrEmptyPoints
|
||
}
|
||
dim := len(pts[0].Coords)
|
||
if dim == 0 {
|
||
return nil, ErrZeroDim
|
||
}
|
||
idIndex := make(map[string]int, len(pts))
|
||
for i, p := range pts {
|
||
if len(p.Coords) != dim {
|
||
return nil, ErrDimMismatch
|
||
}
|
||
if p.ID != "" {
|
||
if _, exists := idIndex[p.ID]; exists {
|
||
return nil, ErrDuplicateID
|
||
}
|
||
idIndex[p.ID] = i
|
||
}
|
||
}
|
||
cfg := kdOptions{metric: EuclideanDistance{}, backend: defaultBackend()}
|
||
for _, o := range opts {
|
||
o(&cfg)
|
||
}
|
||
backend := cfg.backend
|
||
var backendData any
|
||
// Attempt to build gonum backend if requested and available.
|
||
if backend == BackendGonum && hasGonum() {
|
||
if bd, err := buildGonumBackend(pts, cfg.metric); err == nil {
|
||
backendData = bd
|
||
} else {
|
||
backend = BackendLinear // fallback gracefully
|
||
}
|
||
} else if backend == BackendGonum && !hasGonum() {
|
||
backend = BackendLinear // tag not enabled → fallback
|
||
}
|
||
t := &KDTree[T]{
|
||
points: append([]KDPoint[T](nil), pts...),
|
||
dim: dim,
|
||
metric: cfg.metric,
|
||
idIndex: idIndex,
|
||
backend: backend,
|
||
backendData: backendData,
|
||
}
|
||
return t, nil
|
||
}
|
||
|
||
// NewKDTreeFromDim constructs an empty KDTree with the specified dimension.
|
||
// Call Insert to add points after construction.
|
||
func NewKDTreeFromDim[T any](dim int, opts ...KDOption) (*KDTree[T], error) {
|
||
if dim <= 0 {
|
||
return nil, ErrZeroDim
|
||
}
|
||
cfg := kdOptions{metric: EuclideanDistance{}, backend: defaultBackend()}
|
||
for _, o := range opts {
|
||
o(&cfg)
|
||
}
|
||
backend := cfg.backend
|
||
if backend == BackendGonum && !hasGonum() {
|
||
backend = BackendLinear
|
||
}
|
||
return &KDTree[T]{
|
||
points: nil,
|
||
dim: dim,
|
||
metric: cfg.metric,
|
||
idIndex: make(map[string]int),
|
||
backend: backend,
|
||
backendData: nil,
|
||
}, nil
|
||
}
|
||
|
||
// Dim returns the number of dimensions.
|
||
func (t *KDTree[T]) Dim() int { return t.dim }
|
||
|
||
// Len returns the number of points in the tree.
|
||
func (t *KDTree[T]) Len() int { return len(t.points) }
|
||
|
||
// Nearest returns the closest point to the query, along with its distance.
|
||
// ok is false if the tree is empty or the query dimensionality does not match Dim().
|
||
func (t *KDTree[T]) Nearest(query []float64) (KDPoint[T], float64, bool) {
|
||
if len(query) != t.dim || t.Len() == 0 {
|
||
return KDPoint[T]{}, 0, false
|
||
}
|
||
// Gonum backend (if available and built)
|
||
if t.backend == BackendGonum && t.backendData != nil {
|
||
if idx, dist, ok := gonumNearest[T](t.backendData, query); ok && idx >= 0 && idx < len(t.points) {
|
||
return t.points[idx], dist, true
|
||
}
|
||
// fall through to linear scan if backend didn’t return a result
|
||
}
|
||
bestIdx := -1
|
||
bestDist := math.MaxFloat64
|
||
for i := range t.points {
|
||
d := t.metric.Distance(query, t.points[i].Coords)
|
||
if d < bestDist {
|
||
bestDist = d
|
||
bestIdx = i
|
||
}
|
||
}
|
||
if bestIdx < 0 {
|
||
return KDPoint[T]{}, 0, false
|
||
}
|
||
return t.points[bestIdx], bestDist, true
|
||
}
|
||
|
||
// KNearest returns up to k nearest neighbors to the query in ascending distance order.
|
||
// If multiple points are at the same distance, tie ordering is arbitrary and not stable between calls.
|
||
func (t *KDTree[T]) KNearest(query []float64, k int) ([]KDPoint[T], []float64) {
|
||
if k <= 0 || len(query) != t.dim || t.Len() == 0 {
|
||
return nil, nil
|
||
}
|
||
// Gonum backend path
|
||
if t.backend == BackendGonum && t.backendData != nil {
|
||
idxs, dists := gonumKNearest[T](t.backendData, query, k)
|
||
if len(idxs) > 0 {
|
||
neighbors := make([]KDPoint[T], len(idxs))
|
||
for i := range idxs {
|
||
neighbors[i] = t.points[idxs[i]]
|
||
}
|
||
return neighbors, dists
|
||
}
|
||
// fall back on unexpected empty
|
||
}
|
||
tmp := make([]struct {
|
||
idx int
|
||
dist float64
|
||
}, len(t.points))
|
||
for i := range t.points {
|
||
tmp[i].idx = i
|
||
tmp[i].dist = t.metric.Distance(query, t.points[i].Coords)
|
||
}
|
||
sort.Slice(tmp, func(i, j int) bool { return tmp[i].dist < tmp[j].dist })
|
||
if k > len(tmp) {
|
||
k = len(tmp)
|
||
}
|
||
neighbors := make([]KDPoint[T], k)
|
||
dists := make([]float64, k)
|
||
for i := 0; i < k; i++ {
|
||
neighbors[i] = t.points[tmp[i].idx]
|
||
dists[i] = tmp[i].dist
|
||
}
|
||
return neighbors, dists
|
||
}
|
||
|
||
// Radius returns points within radius r (inclusive) from the query, sorted by distance.
|
||
func (t *KDTree[T]) Radius(query []float64, r float64) ([]KDPoint[T], []float64) {
|
||
if r < 0 || len(query) != t.dim || t.Len() == 0 {
|
||
return nil, nil
|
||
}
|
||
// Gonum backend path
|
||
if t.backend == BackendGonum && t.backendData != nil {
|
||
idxs, dists := gonumRadius[T](t.backendData, query, r)
|
||
if len(idxs) > 0 {
|
||
neighbors := make([]KDPoint[T], len(idxs))
|
||
for i := range idxs {
|
||
neighbors[i] = t.points[idxs[i]]
|
||
}
|
||
return neighbors, dists
|
||
}
|
||
// fall back if no results
|
||
}
|
||
var sel []struct {
|
||
idx int
|
||
dist float64
|
||
}
|
||
for i := range t.points {
|
||
d := t.metric.Distance(query, t.points[i].Coords)
|
||
if d <= r {
|
||
sel = append(sel, struct {
|
||
idx int
|
||
dist float64
|
||
}{i, d})
|
||
}
|
||
}
|
||
sort.Slice(sel, func(i, j int) bool { return sel[i].dist < sel[j].dist })
|
||
neighbors := make([]KDPoint[T], len(sel))
|
||
dists := make([]float64, len(sel))
|
||
for i := range sel {
|
||
neighbors[i] = t.points[sel[i].idx]
|
||
dists[i] = sel[i].dist
|
||
}
|
||
return neighbors, dists
|
||
}
|
||
|
||
// Insert adds a point. Returns false if dimensionality mismatch or duplicate ID exists.
|
||
func (t *KDTree[T]) Insert(p KDPoint[T]) bool {
|
||
if len(p.Coords) != t.dim {
|
||
return false
|
||
}
|
||
if p.ID != "" {
|
||
if _, exists := t.idIndex[p.ID]; exists {
|
||
return false
|
||
}
|
||
// will set after append
|
||
}
|
||
t.points = append(t.points, p)
|
||
if p.ID != "" {
|
||
t.idIndex[p.ID] = len(t.points) - 1
|
||
}
|
||
// Rebuild backend if using Gonum
|
||
if t.backend == BackendGonum && hasGonum() {
|
||
if bd, err := buildGonumBackend(t.points, t.metric); err == nil {
|
||
t.backendData = bd
|
||
} else {
|
||
// fallback to linear if rebuild fails
|
||
t.backend = BackendLinear
|
||
t.backendData = nil
|
||
}
|
||
}
|
||
return true
|
||
}
|
||
|
||
// DeleteByID removes a point by its ID. Returns false if not found or ID empty.
|
||
func (t *KDTree[T]) DeleteByID(id string) bool {
|
||
if id == "" {
|
||
return false
|
||
}
|
||
idx, ok := t.idIndex[id]
|
||
if !ok {
|
||
return false
|
||
}
|
||
last := len(t.points) - 1
|
||
// swap delete
|
||
t.points[idx] = t.points[last]
|
||
if t.points[idx].ID != "" {
|
||
t.idIndex[t.points[idx].ID] = idx
|
||
}
|
||
t.points = t.points[:last]
|
||
delete(t.idIndex, id)
|
||
// Rebuild backend if using Gonum
|
||
if t.backend == BackendGonum && hasGonum() {
|
||
if bd, err := buildGonumBackend(t.points, t.metric); err == nil {
|
||
t.backendData = bd
|
||
} else {
|
||
// fallback to linear if rebuild fails
|
||
t.backend = BackendLinear
|
||
t.backendData = nil
|
||
}
|
||
}
|
||
return true
|
||
}
|