feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
aead.dev/minisign v0.2.0/go.mod h1:zdq6LdSd9TbuSxchxwhpA9zEb9YXcVGoE8JakuiGaIQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
aead.dev/minisign v0.3.0 h1:8Xafzy5PEVZqYDNP60yJHARlW1eOQtsKNp/Ph2c0vRA=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
aead.dev/minisign v0.3.0/go.mod h1:NLvG3Uoq3skkRMDuc3YHpWUTMTrSExqm+Ij73W13F6Y=
|
2026-02-16 13:47:52 +00:00
|
|
|
cloud.google.com/go v0.26.0/go.mod h1:aQUYkXzVsufM+DwF1aE+0xfcU+56JwCaLick0ClmMTw=
|
|
|
|
|
cloud.google.com/go v0.34.0/go.mod h1:aQUYkXzVsufM+DwF1aE+0xfcU+56JwCaLick0ClmMTw=
|
|
|
|
|
cloud.google.com/go v0.123.0 h1:2NAUJwPR47q+E35uaJeYoNhuNEM9kM8SjgRgdeOJUSE=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
cloud.google.com/go v0.123.0/go.mod h1:xBoMV08QcqUGuPW65Qfm1o9Y4zKZBpGS+7bImXLTAZU=
|
2026-02-16 13:47:52 +00:00
|
|
|
code.gitea.io/sdk/gitea v0.23.2 h1:iJB1FDmLegwfwjX8gotBDHdPSbk/ZR8V9VmEJaVsJYg=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
code.gitea.io/sdk/gitea v0.23.2/go.mod h1:yyF5+GhljqvA30sRDreoyHILruNiy4ASufugzYg0VHM=
|
2026-02-16 13:47:52 +00:00
|
|
|
codeberg.org/mvdkleijn/forgejo-sdk/forgejo/v2 v2.2.0 h1:HTCWpzyWQOHDWt3LzI6/d2jvUDsw/vgGRWm/8BTvcqI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
codeberg.org/mvdkleijn/forgejo-sdk/forgejo/v2 v2.2.0/go.mod h1:ZglEEDj+qkxYUb+SQIeqGtFxQrbaMYqIOgahNKb7uxs=
|
2026-02-16 13:47:52 +00:00
|
|
|
dario.cat/mergo v1.0.2 h1:85+piFYR1tMbRrLcDwR18y4UKJ3aH1Tbzi24VRW1TK8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
dario.cat/mergo v1.0.2/go.mod h1:E/hbnu0NxMFBjpMIE34DRGLWqDy0g5FuKDhCb31ngxA=
|
2026-02-16 13:47:52 +00:00
|
|
|
dmitri.shuralyov.com/gpu/mtl v0.0.0-20190408044501-666a987793e9/go.mod h1:H6x//7gZCb22OMCxBHrMx7a5I7Hp++hsVxbQ4BYO7hU=
|
|
|
|
|
forge.lthn.ai/core/go/internal/core-ide v0.0.0-20260216061909-4eb1e02f5e6a h1:+uSOtdnnDQNWflbP7VRLW0NgiMYSdpumlfjIIJuc3+I=
|
|
|
|
|
forge.lthn.ai/core/go/internal/core-ide v0.0.0-20260216061909-4eb1e02f5e6a/go.mod h1:PxIecvyDzCGxZ5RXYU4gU9SQ0pKIYxIBYuv6V5iTvzw=
|
|
|
|
|
gioui.org v0.0.0-20210308172011-57750fc8a0a6/go.mod h1:RSH6KIUZ0p2xy5zHDxgAM4zumjgTw83q2ge/PI+yyw8=
|
|
|
|
|
github.com/42wim/httpsig v1.2.3 h1:xb0YyWhkYj57SPtfSttIobJUPJZB9as1nsfo7KWVcEs=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/42wim/httpsig v1.2.3/go.mod h1:nZq9OlYKDrUBhptd77IHx4/sZZD+IxTBADvAPI9G/EM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/BurntSushi/toml v0.3.1/go.mod h1:xHWCNGjB5oqiDr8zfno3MHue2Ht5sIBksp03qcyfWMU=
|
|
|
|
|
github.com/BurntSushi/xgb v0.0.0-20160522181843-27f122750802/go.mod h1:IVnqGOEym/WlBOVXweHU+Q+/VP0lqqI8lqeDx9IjBqo=
|
|
|
|
|
github.com/DATA-DOG/go-sqlmock v1.5.2 h1:OcvFkGmslmlZibjAjaHm3L//6LiuBgolP7OputlJIzU=
|
|
|
|
|
github.com/DATA-DOG/go-sqlmock v1.5.2/go.mod h1:88MAG/4G7SMwSE3CeA0ZKzrT5CiOU3OJ+JlNzwDqpNU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/Microsoft/go-winio v0.5.2/go.mod h1:WpS1mjBmmwHBEWmogvA2mj8546UReBk4v8QkMxJ6pZY=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/Microsoft/go-winio v0.6.2 h1:F2VQgta7ecxGYO8k3ZZz3RS8fVIXVxONVUPlNERoyfY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/Microsoft/go-winio v0.6.2/go.mod h1:yd8OoFMLzJbo9gZq8j5qaps8bJ9aShtEA8Ipt1oGCvU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/ProtonMail/go-crypto v1.3.0 h1:ILq8+Sf5If5DCpHQp4PbZdS1J7HDFRXz/+xKBiRGFrw=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/ProtonMail/go-crypto v1.3.0/go.mod h1:9whxjD8Rbs29b4XWbB8irEcE8KHMqaR2e7GWU1R+/PE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/Snider/Borg v0.2.0 h1:iCyDhY4WTXi39+FexRwXbn2YpZ2U9FUXVXDZk9xRCXQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/Snider/Borg v0.2.0/go.mod h1:TqlKnfRo9okioHbgrZPfWjQsztBV0Nfskz4Om1/vdMY=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/Snider/Enchantrix v0.0.2 h1:ExZQiBhfS/p/AHFTKhY80TOd+BXZjK95EzByAEgwvjs=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/Snider/Enchantrix v0.0.2/go.mod h1:CtFcLAvnDT1KcuF1JBb/DJj0KplY8jHryO06KzQ1hsQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/TwiN/go-color v1.4.1 h1:mqG0P/KBgHKVqmtL5ye7K0/Gr4l6hTksPgTgMk3mUzc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/TwiN/go-color v1.4.1/go.mod h1:WcPf/jtiW95WBIsEeY1Lc/b8aaWoiqQpu5cf8WFxu+s=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/adrg/xdg v0.5.3 h1:xRnxJXne7+oWDatRhR1JLnvuccuIeCoBu2rtuLqQB78=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/adrg/xdg v0.5.3/go.mod h1:nlTsY+NNiCBGCK2tpm09vRqfVzrc2fLmXGpBLF0zlTQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/agnivade/levenshtein v1.2.1 h1:EHBY3UOn1gwdy/VbFwgo4cxecRznFk7fKWN1KOX7eoM=
|
|
|
|
|
github.com/agnivade/levenshtein v1.2.1/go.mod h1:QVVI16kDrtSuwcpd0p1+xMC6Z/VfhtCyDIjcwga4/DU=
|
|
|
|
|
github.com/ajstarks/svgo v0.0.0-20180226025133-644b8db467af/go.mod h1:K08gAheRH3/J6wwsYMMT4xOr94bZjxIelGM0+d/wbFw=
|
|
|
|
|
github.com/alecthomas/assert/v2 v2.10.0 h1:jjRCHsj6hBJhkmhznrCzoNpbA3zqy0fYiUcYZP/GkPY=
|
|
|
|
|
github.com/alecthomas/assert/v2 v2.10.0/go.mod h1:Bze95FyfUr7x34QZrjL+XP+0qgp/zg8yS+TtBj1WA3k=
|
|
|
|
|
github.com/alecthomas/repr v0.4.0 h1:GhI2A8MACjfegCPVq9f1FLvIBS+DrQ2KQBFZP1iFzXc=
|
|
|
|
|
github.com/alecthomas/repr v0.4.0/go.mod h1:Fr0507jx4eOXV7AlPV6AVZLYrLIuIeSOWtW57eE/O/4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/andybalholm/brotli v1.1.1 h1:PR2pgnyFznKEugtsUo0xLdDop5SKXd5Qf5ysW+7XdTA=
|
|
|
|
|
github.com/andybalholm/brotli v1.1.1/go.mod h1:05ib4cKhjx3OQYUY22hTVd34Bc8upXjOLL2rKwwZBoA=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/andybalholm/brotli v1.2.0 h1:ukwgCxwYrmACq68yiUqwIWnGY0cTPox/M94sVwToPjQ=
|
|
|
|
|
github.com/andybalholm/brotli v1.2.0/go.mod h1:rzTDkvFWvIrjDXZHkuS16NPggd91W3kUSvPlQ1pLaKY=
|
|
|
|
|
github.com/anmitsu/go-shlex v0.0.0-20200514113438-38f4b401e2be h1:9AeTilPcZAjCFIImctFaOjnTIavg87rW78vTPkQqLI8=
|
|
|
|
|
github.com/anmitsu/go-shlex v0.0.0-20200514113438-38f4b401e2be/go.mod h1:ySMOLuWl6zY27l47sB3qLNK6tF2fkHG55UZxx8oIVo4=
|
|
|
|
|
github.com/antihax/optional v1.0.0/go.mod h1:uupD/76wgC+ih3iEmQUL+0Ugr19nfwCT1kdvxnR2qWY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/apache/arrow-go/v18 v18.1.0 h1:agLwJUiVuwXZdwPYVrlITfx7bndULJ/dggbnLFgDp/Y=
|
|
|
|
|
github.com/apache/arrow-go/v18 v18.1.0/go.mod h1:tigU/sIgKNXaesf5d7Y95jBBKS5KsxTqYBKXFsvKzo0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/apache/arrow-go/v18 v18.5.1 h1:yaQ6zxMGgf9YCYw4/oaeOU3AULySDlAYDOcnr4LdHdI=
|
|
|
|
|
github.com/apache/arrow-go/v18 v18.5.1/go.mod h1:OCCJsmdq8AsRm8FkBSSmYTwL/s4zHW9CqxeBxEytkNE=
|
|
|
|
|
github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40 h1:q4dksr6ICHXqG5hm0ZW5IHyeEJXoIJSOZeBLmWPNeIQ=
|
|
|
|
|
github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40/go.mod h1:Q7yQnSMnLvcXlZ8RV+jwz/6y1rQTqbX6C82SndT52Zs=
|
|
|
|
|
github.com/apache/thrift v0.21.0 h1:tdPmh/ptjE1IJnhbhrcl2++TauVjy242rkV/UzJChnE=
|
|
|
|
|
github.com/apache/thrift v0.21.0/go.mod h1:W1H8aR/QRtYNvrPeFXBtobyRkd0/YVhTc6i07XIAgDw=
|
|
|
|
|
github.com/apache/thrift v0.22.0 h1:r7mTJdj51TMDe6RtcmNdQxgn9XcyfGDOzegMDRg47uc=
|
|
|
|
|
github.com/arbovm/levenshtein v0.0.0-20160628152529-48b4e1c0c4d0/go.mod h1:t2tdKJDJF9BV14lnkjHmOQgcvEKgtqs5a1N3LNdJhGE=
|
|
|
|
|
github.com/armon/go-socks5 v0.0.0-20160902184237-e75332964ef5 h1:0CwZNZbxp69SHPdPJAN/hZIm0C4OItdklCFmMRWYpio=
|
|
|
|
|
github.com/armon/go-socks5 v0.0.0-20160902184237-e75332964ef5/go.mod h1:wHh0iHkYZB8zMSxRWpUBQtwG5a7fFgvEO+odwuTv2gs=
|
|
|
|
|
github.com/aws/aws-sdk-go-v2 v1.41.1 h1:ABlyEARCDLN034NhxlRUSZr4l71mh+T5KAeGh6cerhU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2 v1.41.1/go.mod h1:MayyLB8y+buD9hZqkCW3kX1AKq07Y5pXxtgB+rRFhz0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.7.4 h1:489krEF9xIGkOaaX3CE/Be2uWjiXrkCH6gUX+bZA/BU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/aws/protocol/eventstream v1.7.4/go.mod h1:IOAPF6oT9KCsceNTvvYMNHy0+kMF8akOjeDvPENWxp4=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/internal/configsources v1.4.17 h1:xOLELNKGp2vsiteLsvLPwxC+mYmO6OZ8PYgiuPJzF8U=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/internal/configsources v1.4.17/go.mod h1:5M5CI3D12dNOtH3/mk6minaRwI2/37ifCURZISxA/IQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.7.17 h1:WWLqlh79iO48yLkj1v3ISRNiv+3KdQoZ6JWyfcsyQik=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/internal/endpoints/v2 v2.7.17/go.mod h1:EhG22vHRrvF8oXSTYStZhJc1aUgKtnJe+aOiFEV90cM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/internal/v4a v1.4.17 h1:JqcdRG//czea7Ppjb+g/n4o8i/R50aTBHkA7vu0lK+k=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/internal/v4a v1.4.17/go.mod h1:CO+WeGmIdj/MlPel2KwID9Gt7CNq4M65HUfBW97liM0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.13.4 h1:0ryTNEdJbzUCEWkVXEXoqlXV72J5keC1GvILMOuD00E=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/service/internal/accept-encoding v1.13.4/go.mod h1:HQ4qwNZh32C3CBeO6iJLQlgtMzqeG17ziAA/3KDJFow=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/service/internal/checksum v1.9.8 h1:Z5EiPIzXKewUQK0QTMkutjiaPVeVYXX7KIqhXu/0fXs=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/service/internal/checksum v1.9.8/go.mod h1:FsTpJtvC4U1fyDXk7c71XoDv3HlRm8V3NiYLeYLh5YE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.13.17 h1:RuNSMoozM8oXlgLG/n6WLaFGoea7/CddrCfIiSA+xdY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/service/internal/presigned-url v1.13.17/go.mod h1:F2xxQ9TZz5gDWsclCtPQscGpP0VUOc8RqgFM3vDENmU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/service/internal/s3shared v1.19.17 h1:bGeHBsGZx0Dvu/eJC0Lh9adJa3M1xREcndxLNZlve2U=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/service/internal/s3shared v1.19.17/go.mod h1:dcW24lbU0CzHusTE8LLHhRLI42ejmINN8Lcr22bwh/g=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/service/s3 v1.96.0 h1:oeu8VPlOre74lBA/PMhxa5vewaMIMmILM+RraSyB8KA=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/aws/aws-sdk-go-v2/service/s3 v1.96.0/go.mod h1:5jggDlZ2CLQhwJBiZJb4vfk4f0GxWdEDruWKEJ1xOdo=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/aws/smithy-go v1.24.0 h1:LpilSUItNPFr1eY85RYgTIg5eIEPtvFbskaFcmmIUnk=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/aws/smithy-go v1.24.0/go.mod h1:LEj2LM3rBRQJxPZTB4KuzZkaZYnZPnvgIhb4pu07mx0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/aymanbagabas/go-osc52/v2 v2.0.1 h1:HwpRHbFMcZLEVr42D4p7XBqjyuxQH5SMiErDT4WkJ2k=
|
|
|
|
|
github.com/aymanbagabas/go-osc52/v2 v2.0.1/go.mod h1:uYgXzlJ7ZpABp8OJ+exZzJJhRNQ2ASbcXHWsFqH8hp8=
|
|
|
|
|
github.com/bahlo/generic-list-go v0.2.0 h1:5sz/EEAK+ls5wF+NeqDpk5+iNdMDXrh3z3nPnH1Wvgk=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/bahlo/generic-list-go v0.2.0/go.mod h1:2KvAjgMlE5NNynlg/5iLrrCCZ2+5xWbdbCW3pNTGyYg=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/bep/debounce v1.2.1 h1:v67fRdBA9UQu2NhLFXrSg0Brw7CexQekrBwDMM8bzeY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/bep/debounce v1.2.1/go.mod h1:H8yggRPQKLUhUoqrJC1bO2xNya7vanpDl7xR3ISbCJ0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/boombuler/barcode v1.0.0/go.mod h1:paBWMcWSl3LHKBqUq+rly7CNSldXjb2rDl3JlRe0mD8=
|
|
|
|
|
github.com/brianvoe/gofakeit/v6 v6.28.0 h1:Xib46XXuQfmlLS2EXRuJpqcw8St6qSZz75OUo0tgAW4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/brianvoe/gofakeit/v6 v6.28.0/go.mod h1:Xj58BMSnFqcn/fAQeSK+/PLtC5kSb7FJIq4JyGa8vEs=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/buger/jsonparser v1.1.1 h1:2PnMjfWD7wBILjqQbt530v576A/cAbQvEW9gGIpYMUs=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/buger/jsonparser v1.1.1/go.mod h1:6RYKKt7H4d4+iWqouImQ9R2FZql3VbhNgx27UK13J/0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/bytedance/gopkg v0.1.3 h1:TPBSwH8RsouGCBcMBktLt1AymVo2TVsBVCY4b6TnZ/M=
|
|
|
|
|
github.com/bytedance/gopkg v0.1.3/go.mod h1:576VvJ+eJgyCzdjS+c4+77QF3p7ubbtiKARP3TxducM=
|
|
|
|
|
github.com/bytedance/sonic v1.15.0 h1:/PXeWFaR5ElNcVE84U0dOHjiMHQOwNIx3K4ymzh/uSE=
|
|
|
|
|
github.com/bytedance/sonic v1.15.0/go.mod h1:tFkWrPz0/CUCLEF4ri4UkHekCIcdnkqXw9VduqpJh0k=
|
|
|
|
|
github.com/bytedance/sonic/loader v0.5.0 h1:gXH3KVnatgY7loH5/TkeVyXPfESoqSBSBEiDd5VjlgE=
|
|
|
|
|
github.com/bytedance/sonic/loader v0.5.0/go.mod h1:AR4NYCk5DdzZizZ5djGqQ92eEhCCcdf5x77udYiSJRo=
|
|
|
|
|
github.com/census-instrumentation/opencensus-proto v0.2.1/go.mod h1:f6KPmirojxKA12rnyqOA5BBL4O983OfeGPqjHWSTneU=
|
|
|
|
|
github.com/cespare/xxhash/v2 v2.3.0 h1:UL815xU9SqsFlibzuggzjXhog7bL6oX9BbNZnL2UFvs=
|
|
|
|
|
github.com/cespare/xxhash/v2 v2.3.0/go.mod h1:VGX0DQ3Q6kWi7AoAeZDth3/j3BFtOZR5XLFGgcrjCOs=
|
|
|
|
|
github.com/charmbracelet/bubbletea v1.3.10 h1:otUDHWMMzQSB0Pkc87rm691KZ3SWa4KUlvF9nRvCICw=
|
|
|
|
|
github.com/charmbracelet/bubbletea v1.3.10/go.mod h1:ORQfo0fk8U+po9VaNvnV95UPWA1BitP1E0N6xJPlHr4=
|
|
|
|
|
github.com/charmbracelet/colorprofile v0.4.2 h1:BdSNuMjRbotnxHSfxy+PCSa4xAmz7szw70ktAtWRYrY=
|
|
|
|
|
github.com/charmbracelet/colorprofile v0.4.2/go.mod h1:0rTi81QpwDElInthtrQ6Ni7cG0sDtwAd4C4le060fT8=
|
|
|
|
|
github.com/charmbracelet/lipgloss v1.1.1-0.20250404203927-76690c660834 h1:ZR7e0ro+SZZiIZD7msJyA+NjkCNNavuiPBLgerbOziE=
|
|
|
|
|
github.com/charmbracelet/lipgloss v1.1.1-0.20250404203927-76690c660834/go.mod h1:aKC/t2arECF6rNOnaKaVU6y4t4ZeHQzqfxedE/VkVhA=
|
|
|
|
|
github.com/charmbracelet/x/ansi v0.11.6 h1:GhV21SiDz/45W9AnV2R61xZMRri5NlLnl6CVF7ihZW8=
|
|
|
|
|
github.com/charmbracelet/x/ansi v0.11.6/go.mod h1:2JNYLgQUsyqaiLovhU2Rv/pb8r6ydXKS3NIttu3VGZQ=
|
|
|
|
|
github.com/charmbracelet/x/cellbuf v0.0.15 h1:ur3pZy0o6z/R7EylET877CBxaiE1Sp1GMxoFPAIztPI=
|
|
|
|
|
github.com/charmbracelet/x/cellbuf v0.0.15/go.mod h1:J1YVbR7MUuEGIFPCaaZ96KDl5NoS0DAWkskup+mOY+Q=
|
|
|
|
|
github.com/charmbracelet/x/term v0.2.2 h1:xVRT/S2ZcKdhhOuSP4t5cLi5o+JxklsoEObBSgfgZRk=
|
|
|
|
|
github.com/charmbracelet/x/term v0.2.2/go.mod h1:kF8CY5RddLWrsgVwpw4kAa6TESp6EB5y3uxGLeCqzAI=
|
|
|
|
|
github.com/chewxy/hm v1.0.0 h1:zy/TSv3LV2nD3dwUEQL2VhXeoXbb9QkpmdRAVUFiA6k=
|
|
|
|
|
github.com/chewxy/hm v1.0.0/go.mod h1:qg9YI4q6Fkj/whwHR1D+bOGeF7SniIP40VweVepLjg0=
|
|
|
|
|
github.com/chewxy/math32 v1.0.0/go.mod h1:Miac6hA1ohdDUTagnvJy/q+aNnEk16qWUdb8ZVhvCN0=
|
|
|
|
|
github.com/chewxy/math32 v1.11.1 h1:b7PGHlp8KjylDoU8RrcEsRuGZhJuz8haxnKfuMMRqy8=
|
|
|
|
|
github.com/chewxy/math32 v1.11.1/go.mod h1:dOB2rcuFrCn6UHrze36WSLVPKtzPMRAQvBvUwkSsLqs=
|
|
|
|
|
github.com/client9/misspell v0.3.4/go.mod h1:qj6jICC3Q7zFZvVWo7KLAzC3yx5G7kyvSDkc90ppPyw=
|
|
|
|
|
github.com/clipperhouse/displaywidth v0.10.0 h1:GhBG8WuerxjFQQYeuZAeVTuyxuX+UraiZGD4HJQ3Y8g=
|
|
|
|
|
github.com/clipperhouse/displaywidth v0.10.0/go.mod h1:XqJajYsaiEwkxOj4bowCTMcT1SgvHo9flfF3jQasdbs=
|
|
|
|
|
github.com/clipperhouse/stringish v0.1.1 h1:+NSqMOr3GR6k1FdRhhnXrLfztGzuG+VuFDfatpWHKCs=
|
|
|
|
|
github.com/clipperhouse/stringish v0.1.1/go.mod h1:v/WhFtE1q0ovMta2+m+UbpZ+2/HEXNWYXQgCt4hdOzA=
|
|
|
|
|
github.com/clipperhouse/uax29/v2 v2.6.0 h1:z0cDbUV+aPASdFb2/ndFnS9ts/WNXgTNNGFoKXuhpos=
|
|
|
|
|
github.com/clipperhouse/uax29/v2 v2.6.0/go.mod h1:Wn1g7MK6OoeDT0vL+Q0SQLDz/KpfsVRgg6W7ihQeh4g=
|
|
|
|
|
github.com/cloudflare/circl v1.6.3 h1:9GPOhQGF9MCYUeXyMYlqTR6a5gTrgR/fBLXvUgtVcg8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/cloudflare/circl v1.6.3/go.mod h1:2eXP6Qfat4O/Yhh8BznvKnJ+uzEoTQ6jVKJRn81BiS4=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/cloudwego/base64x v0.1.6 h1:t11wG9AECkCDk5fMSoxmufanudBtJ+/HemLstXDLI2M=
|
|
|
|
|
github.com/cloudwego/base64x v0.1.6/go.mod h1:OFcloc187FXDaYHvrNIjxSe8ncn0OOM8gEHfghB2IPU=
|
|
|
|
|
github.com/cloudwego/iasm v0.2.0 h1:1KNIy1I1H9hNNFEEH3DVnI4UujN+1zjpuk6gwHLTssg=
|
|
|
|
|
github.com/cloudwego/iasm v0.2.0/go.mod h1:8rXZaNYT2n95jn+zTI1sDr+IgcD2GVs0nlbbQPiEFhY=
|
|
|
|
|
github.com/cncf/udpa/go v0.0.0-20191209042840-269d4d468f6f/go.mod h1:M8M6+tZqaGXZJjfX53e64911xZQV5JYwmTeXPW+k8Sc=
|
|
|
|
|
github.com/cncf/udpa/go v0.0.0-20201120205902-5459f2c99403/go.mod h1:WmhPx2Nbnhtbo57+VJT5O0JRkEi1Wbu0z5j0R8u5Hbk=
|
|
|
|
|
github.com/cncf/xds/go v0.0.0-20210312221358-fbca930ec8ed/go.mod h1:eXthEFrGJvWHgFFCl3hGmgk+/aYT6PnTQLykKQRLhEs=
|
|
|
|
|
github.com/coder/websocket v1.8.14 h1:9L0p0iKiNOibykf283eHkKUHHrpG7f65OE3BhhO7v9g=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/coder/websocket v1.8.14/go.mod h1:NX3SzP+inril6yawo5CQXx8+fk145lPDC6pumgx0mVg=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/containerd/console v1.0.5 h1:R0ymNeydRqH2DmakFNdmjR2k0t7UPuiOV/N/27/qqsc=
|
|
|
|
|
github.com/containerd/console v1.0.5/go.mod h1:YynlIjWYF8myEu6sdkwKIvGQq+cOckRm6So2avqoYAk=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/cpuguy83/go-md2man/v2 v2.0.6/go.mod h1:oOW0eioCTA6cOiMLiUPZOpcVxMig6NIQQ7OS05n1F4g=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/cyphar/filepath-securejoin v0.6.1 h1:5CeZ1jPXEiYt3+Z6zqprSAgSWiggmpVyciv8syjIpVE=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/cyphar/filepath-securejoin v0.6.1/go.mod h1:A8hd4EnAeyujCJRrICiOWqjS1AX0a9kM5XL+NwKoYSc=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1 h1:cBzrdJPAFBsgCrDPnZxlp1dF2+k4r1kVpD7+1S1PVjY=
|
|
|
|
|
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1/go.mod h1:uw2gLcxEuYUlAd/EXyjc/v55nd3+47YAgWbSXVxPrNI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
|
|
|
|
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/davecgh/go-spew v1.1.2-0.20180830191138-d8f796af33cc h1:U9qPSI2PIWSS1VwoXQT9A3Wy9MM3WgvqSxFWenqJduM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/davecgh/go-spew v1.1.2-0.20180830191138-d8f796af33cc/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/davidmz/go-pageant v1.0.2 h1:bPblRCh5jGU+Uptpz6LgMZGD5hJoOt7otgT454WvHn0=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/davidmz/go-pageant v1.0.2/go.mod h1:P2EDDnMqIwG5Rrp05dTRITj9z2zpGcD9efWSkTNKLIE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/dlclark/regexp2 v1.11.5 h1:Q/sSnsKerHeCkc/jSTNq1oCm7KiVgUMZRDUoRu0JQZQ=
|
|
|
|
|
github.com/dlclark/regexp2 v1.11.5/go.mod h1:DHkYz0B9wPfa6wondMfaivmHpzrQ3v9q8cnmRbL6yW8=
|
|
|
|
|
github.com/dustin/go-humanize v1.0.1 h1:GzkhY7T5VNhEkwH0PVJgjz+fX1rhBrR7pRT3mDkpeCY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/dustin/go-humanize v1.0.1/go.mod h1:Mu1zIs6XwVuF/gI1OepvI0qD18qycQx+mFykh5fBlto=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/ebitengine/purego v0.9.1 h1:a/k2f2HQU3Pi399RPW1MOaZyhKJL9w/xFpKAg4q1s0A=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/ebitengine/purego v0.9.1/go.mod h1:iIjxzd6CiRiOG0UyXP+V1+jWqUXVjPKLAI0mRfJZTmQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/elazarl/goproxy v1.7.2 h1:Y2o6urb7Eule09PjlhQRGNsqRfPmYI3KKQLFpCAV3+o=
|
|
|
|
|
github.com/elazarl/goproxy v1.7.2/go.mod h1:82vkLNir0ALaW14Rc399OTTjyNREgmdL2cVoIbS6XaE=
|
|
|
|
|
github.com/emirpasic/gods v1.18.1 h1:FXtiHYKDGKCW2KzwZKx0iC0PQmdlorYgdFG9jPXJ1Bc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/emirpasic/gods v1.18.1/go.mod h1:8tpGGwCnJ5H4r6BWwaV6OrWmMoPhUl5jm/FMNAnJvWQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/emirpasic/gods/v2 v2.0.0-alpha h1:dwFlh8pBg1VMOXWGipNMRt8v96dKAIvBehtCt6OtunU=
|
|
|
|
|
github.com/emirpasic/gods/v2 v2.0.0-alpha/go.mod h1:W0y4M2dtBB9U5z3YlghmpuUhiaZT2h6yoeE+C1sCp6A=
|
|
|
|
|
github.com/envoyproxy/go-control-plane v0.9.0/go.mod h1:YTl/9mNaCwkRvm6d1a2C3ymFceY/DCBVvsKhRF0iEA4=
|
|
|
|
|
github.com/envoyproxy/go-control-plane v0.9.1-0.20191026205805-5f8ba28d4473/go.mod h1:YTl/9mNaCwkRvm6d1a2C3ymFceY/DCBVvsKhRF0iEA4=
|
|
|
|
|
github.com/envoyproxy/go-control-plane v0.9.4/go.mod h1:6rpuAdCZL397s3pYoYcLgu1mIlRU8Am5FuJP05cCM98=
|
|
|
|
|
github.com/envoyproxy/go-control-plane v0.9.9-0.20201210154907-fd9021fe5dad/go.mod h1:cXg6YxExXjJnVBQHBLXeUAgxn2UodCpnH306RInaBQk=
|
|
|
|
|
github.com/envoyproxy/go-control-plane v0.9.9-0.20210217033140-668b12f5399d/go.mod h1:cXg6YxExXjJnVBQHBLXeUAgxn2UodCpnH306RInaBQk=
|
|
|
|
|
github.com/envoyproxy/go-control-plane v0.9.9-0.20210512163311-63b5d3c536b0/go.mod h1:hliV/p42l8fGbc6Y9bQ70uLwIvmJyVE5k4iMKlh8wCQ=
|
|
|
|
|
github.com/envoyproxy/protoc-gen-validate v0.1.0/go.mod h1:iSmxcyjqTsJpI2R4NaDN7+kN2VEUnK/pcBlmesArF7c=
|
|
|
|
|
github.com/erikgeiser/coninput v0.0.0-20211004153227-1c3628e74d0f h1:Y/CXytFA4m6baUTXGLOoWe4PQhGxaX0KpnayAqC48p4=
|
|
|
|
|
github.com/erikgeiser/coninput v0.0.0-20211004153227-1c3628e74d0f/go.mod h1:vw97MGsxSvLiUE2X8qFplwetxpGLQrlU1Q9AUEIzCaM=
|
|
|
|
|
github.com/fatih/color v1.18.0 h1:S8gINlzdQ840/4pfAwic/ZE0djQEH3wM94VfqLTZcOM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/fatih/color v1.18.0/go.mod h1:4FelSpRwEGDpQ12mAdzqdOukCy4u8WUtOY6lkT/6HfU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/fogleman/gg v1.2.1-0.20190220221249-0403632d5b90/go.mod h1:R/bRT+9gY/C5z7JzPU0zXsXHKM4/ayA+zqcVNZzPa1k=
|
|
|
|
|
github.com/fogleman/gg v1.3.0/go.mod h1:R/bRT+9gY/C5z7JzPU0zXsXHKM4/ayA+zqcVNZzPa1k=
|
|
|
|
|
github.com/frankban/quicktest v1.14.6 h1:7Xjx+VpznH+oBnejlPUj8oUpdxnVs4f8XU8WnHkI4W8=
|
|
|
|
|
github.com/frankban/quicktest v1.14.6/go.mod h1:4ptaffx2x8+WTWXmUCuVU6aPUX1/Mz7zb5vbUoiM6w0=
|
|
|
|
|
github.com/fsnotify/fsnotify v1.9.0 h1:2Ml+OJNzbYCTzsxtv8vKSFD9PbJjmhYF14k/jKC7S9k=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/fsnotify/fsnotify v1.9.0/go.mod h1:8jBTzvmWwFyi3Pb8djgCCO5IBqzKJ/Jwo8TRcHyHii0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/gabriel-vasile/mimetype v1.4.13 h1:46nXokslUBsAJE/wMsp5gtO500a4F3Nkz9Ufpk2AcUM=
|
|
|
|
|
github.com/gabriel-vasile/mimetype v1.4.13/go.mod h1:d+9Oxyo1wTzWdyVUPMmXFvp4F9tea18J8ufA774AB3s=
|
|
|
|
|
github.com/getkin/kin-openapi v0.133.0 h1:pJdmNohVIJ97r4AUFtEXRXwESr8b0bD721u/Tz6k8PQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/getkin/kin-openapi v0.133.0/go.mod h1:boAciF6cXk5FhPqe/NQeBTeenbjqU4LhWBf09ILVvWE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/ghodss/yaml v1.0.0/go.mod h1:4dBDuWmgqj2HViK6kFavaiC9ZROes6MMH2rRYeMEF04=
|
|
|
|
|
github.com/gin-contrib/cors v1.7.6 h1:3gQ8GMzs1Ylpf70y8bMw4fVpycXIeX1ZemuSQIsnQQY=
|
|
|
|
|
github.com/gin-contrib/cors v1.7.6/go.mod h1:Ulcl+xN4jel9t1Ry8vqph23a60FwH9xVLd+3ykmTjOk=
|
|
|
|
|
github.com/gin-contrib/sse v1.1.0 h1:n0w2GMuUpWDVp7qSpvze6fAu9iRxJY4Hmj6AmBOU05w=
|
|
|
|
|
github.com/gin-contrib/sse v1.1.0/go.mod h1:hxRZ5gVpWMT7Z0B0gSNYqqsSCNIJMjzvm6fqCz9vjwM=
|
|
|
|
|
github.com/gin-gonic/gin v1.11.0 h1:OW/6PLjyusp2PPXtyxKHU0RbX6I/l28FTdDlae5ueWk=
|
|
|
|
|
github.com/gin-gonic/gin v1.11.0/go.mod h1:+iq/FyxlGzII0KHiBGjuNn4UNENUlKbGlNmc+W50Dls=
|
|
|
|
|
github.com/gliderlabs/ssh v0.3.8 h1:a4YXD1V7xMF9g5nTkdfnja3Sxy1PVDCj1Zg4Wb8vY6c=
|
|
|
|
|
github.com/gliderlabs/ssh v0.3.8/go.mod h1:xYoytBv1sV0aL3CavoDuJIQNURXkkfPA/wxQ1pL1fAU=
|
|
|
|
|
github.com/go-fed/httpsig v1.1.0 h1:9M+hb0jkEICD8/cAiNqEB66R87tTINszBRTjwjQzWcI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/go-fed/httpsig v1.1.0/go.mod h1:RCMrTZvN1bJYtofsG4rd5NaO5obxQ5xBkdiS7xsT7bM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/go-fonts/dejavu v0.1.0/go.mod h1:4Wt4I4OU2Nq9asgDCteaAaWZOV24E+0/Pwo0gppep4g=
|
|
|
|
|
github.com/go-fonts/latin-modern v0.2.0/go.mod h1:rQVLdDMK+mK1xscDwsqM5J8U2jrRa3T0ecnM9pNujks=
|
|
|
|
|
github.com/go-fonts/liberation v0.1.1/go.mod h1:K6qoJYypsmfVjWg8KOVDQhLc8UDgIK2HYqyqAO9z7GY=
|
|
|
|
|
github.com/go-fonts/stix v0.1.0/go.mod h1:w/c1f0ldAUlJmLBvlbkvVXLAD+tAMqobIIQpmnUIzUY=
|
|
|
|
|
github.com/go-git/gcfg v1.5.1-0.20230307220236-3a3c6141e376 h1:+zs/tPmkDkHx3U66DAb0lQFJrpS6731Oaa12ikc+DiI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/go-git/gcfg v1.5.1-0.20230307220236-3a3c6141e376/go.mod h1:an3vInlBmSxCcxctByoQdvwPiA7DTK7jaaFDBTtu0ic=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/go-git/go-billy/v5 v5.7.0 h1:83lBUJhGWhYp0ngzCMSgllhUSuoHP1iEWYjsPl9nwqM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/go-git/go-billy/v5 v5.7.0/go.mod h1:/1IUejTKH8xipsAcdfcSAlUlo2J7lkYV8GTKxAT/L3E=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/go-git/go-git-fixtures/v4 v4.3.2-0.20231010084843-55a94097c399 h1:eMje31YglSBqCdIqdhKBW8lokaMrL3uTkpGYlE2OOT4=
|
|
|
|
|
github.com/go-git/go-git-fixtures/v4 v4.3.2-0.20231010084843-55a94097c399/go.mod h1:1OCfN199q1Jm3HZlxleg+Dw/mwps2Wbk9frAWm+4FII=
|
|
|
|
|
github.com/go-git/go-git/v5 v5.16.4 h1:7ajIEZHZJULcyJebDLo99bGgS0jRrOxzZG4uCk2Yb2Y=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/go-git/go-git/v5 v5.16.4/go.mod h1:4Ge4alE/5gPs30F2H1esi2gPd69R0C39lolkucHBOp8=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/go-git/go-git/v5 v5.16.5 h1:mdkuqblwr57kVfXri5TTH+nMFLNUxIj9Z7F5ykFbw5s=
|
|
|
|
|
github.com/go-git/go-git/v5 v5.16.5/go.mod h1:QOMLpNf1qxuSY4StA/ArOdfFR2TrKEjJiye2kel2m+M=
|
|
|
|
|
github.com/go-gl/glfw v0.0.0-20190409004039-e6da0acd62b1/go.mod h1:vR7hzQXu2zJy9AVAgeJqvqgH9Q5CA+iKCZ2gyEVpxRU=
|
|
|
|
|
github.com/go-json-experiment/json v0.0.0-20251027170946-4849db3c2f7e h1:Lf/gRkoycfOBPa42vU2bbgPurFong6zXeFtPoxholzU=
|
|
|
|
|
github.com/go-json-experiment/json v0.0.0-20251027170946-4849db3c2f7e/go.mod h1:uNVvRXArCGbZ508SxYYTC5v1JWoz2voff5pm25jU1Ok=
|
|
|
|
|
github.com/go-latex/latex v0.0.0-20210118124228-b3d85cf34e07/go.mod h1:CO1AlKB2CSIqUrmQPqA0gdRIlnLEY0gK5JGjh37zN5U=
|
|
|
|
|
github.com/go-logr/logr v1.4.3 h1:CjnDlHq8ikf6E492q6eKboGOC0T8CDaOvkHCIg8idEI=
|
|
|
|
|
github.com/go-logr/logr v1.4.3/go.mod h1:9T104GzyrTigFIr8wt5mBrctHMim0Nb2HLGrmQ40KvY=
|
|
|
|
|
github.com/go-logr/stdr v1.2.2 h1:hSWxHoqTgW2S2qGc0LTAI563KZ5YKYRhT3MFKZMbjag=
|
|
|
|
|
github.com/go-logr/stdr v1.2.2/go.mod h1:mMo/vtBO5dYbehREoey6XUKy/eSumjCCveDpRre4VKE=
|
|
|
|
|
github.com/go-ole/go-ole v1.3.0 h1:Dt6ye7+vXGIKZ7Xtk4s6/xVdGDQynvom7xCFEdWr6uE=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/go-ole/go-ole v1.3.0/go.mod h1:5LS6F96DhAwUc7C+1HLexzMXY1xGRSryjyPPKW6zv78=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/go-openapi/jsonpointer v0.22.4 h1:dZtK82WlNpVLDW2jlA1YCiVJFVqkED1MegOUy9kR5T4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/go-openapi/jsonpointer v0.22.4/go.mod h1:elX9+UgznpFhgBuaMQ7iu4lvvX1nvNsesQ3oxmYTw80=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/go-openapi/swag/jsonname v0.25.4 h1:bZH0+MsS03MbnwBXYhuTttMOqk+5KcQ9869Vye1bNHI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/go-openapi/swag/jsonname v0.25.4/go.mod h1:GPVEk9CWVhNvWhZgrnvRA6utbAltopbKwDu8mXNUMag=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/go-openapi/testify/v2 v2.0.2 h1:X999g3jeLcoY8qctY/c/Z8iBHTbwLz7R2WXd6Ub6wls=
|
|
|
|
|
github.com/go-openapi/testify/v2 v2.0.2/go.mod h1:HCPmvFFnheKK2BuwSA0TbbdxJ3I16pjwMkYkP4Ywn54=
|
|
|
|
|
github.com/go-playground/locales v0.14.1 h1:EWaQ/wswjilfKLTECiXz7Rh+3BjFhfDFKv/oXslEjJA=
|
|
|
|
|
github.com/go-playground/locales v0.14.1/go.mod h1:hxrqLVvrK65+Rwrd5Fc6F2O76J/NuW9t0sjnWqG1slY=
|
|
|
|
|
github.com/go-playground/universal-translator v0.18.1 h1:Bcnm0ZwsGyWbCzImXv+pAJnYK9S473LQFuzCbDbfSFY=
|
|
|
|
|
github.com/go-playground/universal-translator v0.18.1/go.mod h1:xekY+UJKNuX9WP91TpwSH2VMlDf28Uj24BCp08ZFTUY=
|
|
|
|
|
github.com/go-playground/validator/v10 v10.30.1 h1:f3zDSN/zOma+w6+1Wswgd9fLkdwy06ntQJp0BBvFG0w=
|
|
|
|
|
github.com/go-playground/validator/v10 v10.30.1/go.mod h1:oSuBIQzuJxL//3MelwSLD5hc2Tu889bF0Idm9Dg26cM=
|
|
|
|
|
github.com/go-test/deep v1.0.8 h1:TDsG77qcSprGbC6vTN8OuXp5g+J+b5Pcguhf7Zt61VM=
|
|
|
|
|
github.com/go-test/deep v1.0.8/go.mod h1:5C2ZWiW0ErCdrYzpqxLbTX7MG14M9iiw8DgHncVwcsE=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/go-viper/mapstructure/v2 v2.4.0 h1:EBsztssimR/CONLSZZ04E8qAkxNYq4Qp9LvH92wZUgs=
|
|
|
|
|
github.com/go-viper/mapstructure/v2 v2.4.0/go.mod h1:oJDH3BJKyqBA2TXFhDsKDGDTlndYOZ6rGS0BRZIxGhM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/go-viper/mapstructure/v2 v2.5.0 h1:vM5IJoUAy3d7zRSVtIwQgBj7BiWtMPfmPEgAXnvj1Ro=
|
|
|
|
|
github.com/go-viper/mapstructure/v2 v2.5.0/go.mod h1:oJDH3BJKyqBA2TXFhDsKDGDTlndYOZ6rGS0BRZIxGhM=
|
|
|
|
|
github.com/gobwas/glob v0.2.3 h1:A4xDbljILXROh+kObIiy5kIaPYD8e96x1tgBhUI5J+Y=
|
|
|
|
|
github.com/gobwas/glob v0.2.3/go.mod h1:d3Ez4x06l9bZtSvzIay5+Yzi0fmZzPgnTbPcKjJAkT8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/goccy/go-json v0.10.5 h1:Fq85nIqj+gXn/S5ahsiTlK3TmC85qgirsdTP/+DeaC4=
|
|
|
|
|
github.com/goccy/go-json v0.10.5/go.mod h1:oq7eo15ShAhp70Anwd5lgX2pLfOS3QCiwU/PULtXL6M=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/goccy/go-yaml v1.19.2 h1:PmFC1S6h8ljIz6gMRBopkjP1TVT7xuwrButHID66PoM=
|
|
|
|
|
github.com/goccy/go-yaml v1.19.2/go.mod h1:XBurs7gK8ATbW4ZPGKgcbrY1Br56PdM69F7LkFRi1kA=
|
|
|
|
|
github.com/godbus/dbus/v5 v5.2.2 h1:TUR3TgtSVDmjiXOgAAyaZbYmIeP3DPkld3jgKGV8mXQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/godbus/dbus/v5 v5.2.2/go.mod h1:3AAv2+hPq5rdnr5txxxRwiGjPXamgoIHgz9FPBfOp3c=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/gofrs/flock v0.12.1 h1:MTLVXXHf8ekldpJk3AKicLij9MdwOWkZ+a/jHHZby9E=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/gofrs/flock v0.12.1/go.mod h1:9zxTsyu5xtJ9DK+1tFZyibEV7y3uwDxPPfbxeeHCoD0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/gogo/protobuf v1.3.2 h1:Ov1cvc58UF3b5XjBnZv7+opcTcQFZebYjWzi34vdm4Q=
|
|
|
|
|
github.com/gogo/protobuf v1.3.2/go.mod h1:P1XiOD3dCwIKUDQYPy72D8LYyHL2YPYrpS2s69NZV8Q=
|
|
|
|
|
github.com/golang-jwt/jwt/v5 v5.2.2 h1:Rl4B7itRWVtYIHFrSNd7vhTiz9UpLdi6gZhZ3wEeDy8=
|
|
|
|
|
github.com/golang-jwt/jwt/v5 v5.2.2/go.mod h1:pqrtFR0X4osieyHYxtmOUWsAWrfe1Q5UVIyoH402zdk=
|
|
|
|
|
github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0/go.mod h1:E/TSTwGwJL78qG/PmXZO1EjYhfJinVAhrmmHX6Z8B9k=
|
|
|
|
|
github.com/golang/glog v0.0.0-20160126235308-23def4e6c14b/go.mod h1:SBH7ygxi8pfUlaOkMMuAQtPIUF8ecWP5IEl/CR7VP2Q=
|
|
|
|
|
github.com/golang/groupcache v0.0.0-20241129210726-2c02b8208cf8 h1:f+oWsMOmNPc8JmEHVZIycC7hBoQxHH9pNKQORJNozsQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/golang/groupcache v0.0.0-20241129210726-2c02b8208cf8/go.mod h1:wcDNUvekVysuuOpQKo3191zZyTpiI6se1N1ULghS0sw=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/golang/mock v1.1.1/go.mod h1:oTYuIxOrZwtPieC+H1uAHpcLFnEyAGVDL/k47Jfbm0A=
|
|
|
|
|
github.com/golang/protobuf v1.2.0/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/golang/protobuf v1.3.1/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
|
|
|
|
|
github.com/golang/protobuf v1.3.2/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/golang/protobuf v1.3.3/go.mod h1:vzj43D7+SQXF/4pzW/hwtAqwc6iTitCiVSaWz5lYuqw=
|
|
|
|
|
github.com/golang/protobuf v1.4.0-rc.1/go.mod h1:ceaxUfeHdC40wWswd/P6IGgMaK3YpKi5j83Wpe3EHw8=
|
|
|
|
|
github.com/golang/protobuf v1.4.0-rc.1.0.20200221234624-67d41d38c208/go.mod h1:xKAWHe0F5eneWXFV3EuXVDTCmh+JuBKY0li0aMyXATA=
|
|
|
|
|
github.com/golang/protobuf v1.4.0-rc.2/go.mod h1:LlEzMj4AhA7rCAGe4KMBDvJI+AwstrUpVNzEA03Pprs=
|
|
|
|
|
github.com/golang/protobuf v1.4.0-rc.4.0.20200313231945-b860323f09d0/go.mod h1:WU3c8KckQ9AFe+yFwt9sWVRKCVIyN9cPHBJSNnbL67w=
|
|
|
|
|
github.com/golang/protobuf v1.4.0/go.mod h1:jodUvKwWbYaEsadDk5Fwe5c77LiNKVO9IDvqG2KuDX0=
|
|
|
|
|
github.com/golang/protobuf v1.4.1/go.mod h1:U8fpvMrcmy5pZrNK1lt4xCsGvpyWQ/VVv6QDs8UjoX8=
|
|
|
|
|
github.com/golang/protobuf v1.4.2/go.mod h1:oDoupMAO8OvCJWAcko0GGGIgR6R6ocIYbsSw735rRwI=
|
|
|
|
|
github.com/golang/protobuf v1.4.3/go.mod h1:oDoupMAO8OvCJWAcko0GGGIgR6R6ocIYbsSw735rRwI=
|
|
|
|
|
github.com/golang/protobuf v1.5.0/go.mod h1:FsONVRAS9T7sI+LIUmWTfcYkHO4aIWwzhcaSAoJOfIk=
|
|
|
|
|
github.com/golang/protobuf v1.5.2/go.mod h1:XVQd3VNwM+JqD3oG2Ue2ip4fOMUkwXdXDdiuN0vRsmY=
|
|
|
|
|
github.com/golang/protobuf v1.5.4 h1:i7eJL8qZTpSEXOPTxNKhASYpMn+8e5Q6AdndVa1dWek=
|
|
|
|
|
github.com/golang/protobuf v1.5.4/go.mod h1:lnTiLA8Wa4RWRcIUkrtSVa5nRhsEGBg48fD6rSs7xps=
|
|
|
|
|
github.com/golang/snappy v0.0.3/go.mod h1:/XxbfmMg8lxefKM7IXC3fBNl/7bRcc72aCRzEWrmP2Q=
|
|
|
|
|
github.com/golang/snappy v0.0.4 h1:yAGX7huGHXlcLOEtBnF4w7FQwA26wojNCwOYAEhLjQM=
|
|
|
|
|
github.com/golang/snappy v0.0.4/go.mod h1:/XxbfmMg8lxefKM7IXC3fBNl/7bRcc72aCRzEWrmP2Q=
|
|
|
|
|
github.com/golang/snappy v1.0.0 h1:Oy607GVXHs7RtbggtPBnr2RmDArIsAefDwvrdWvRhGs=
|
|
|
|
|
github.com/google/flatbuffers v2.0.0+incompatible/go.mod h1:1AeVuKshWv4vARoZatz6mlQ0JxURH0Kv5+zNeJKJCa8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/google/flatbuffers v25.1.24+incompatible h1:4wPqL3K7GzBd1CwyhSd3usxLKOaJN/AC6puCca6Jm7o=
|
|
|
|
|
github.com/google/flatbuffers v25.1.24+incompatible/go.mod h1:1AeVuKshWv4vARoZatz6mlQ0JxURH0Kv5+zNeJKJCa8=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/google/flatbuffers v25.12.19+incompatible h1:haMV2JRRJCe1998HeW/p0X9UaMTK6SDo0ffLn2+DbLs=
|
|
|
|
|
github.com/google/flatbuffers v25.12.19+incompatible/go.mod h1:1AeVuKshWv4vARoZatz6mlQ0JxURH0Kv5+zNeJKJCa8=
|
|
|
|
|
github.com/google/go-cmp v0.2.0/go.mod h1:oXzfMopK8JAjlY9xF4vHSVASa0yLyX7SntLO5aqRK0M=
|
|
|
|
|
github.com/google/go-cmp v0.3.0/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMywk6iLU=
|
|
|
|
|
github.com/google/go-cmp v0.3.1/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMywk6iLU=
|
|
|
|
|
github.com/google/go-cmp v0.4.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
|
|
|
|
|
github.com/google/go-cmp v0.5.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/google/go-cmp v0.5.2/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/google/go-cmp v0.5.6/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
|
|
|
|
|
github.com/google/go-cmp v0.7.0 h1:wk8382ETsv4JYUZwIsn6YpYiWiBsYLSJiTsyBybVuN8=
|
|
|
|
|
github.com/google/go-cmp v0.7.0/go.mod h1:pXiqmnSA92OHEEa9HXL2W4E7lf9JzCmGVUdgjX3N/iU=
|
|
|
|
|
github.com/google/go-github/v39 v39.2.0 h1:rNNM311XtPOz5rDdsJXAp2o8F67X9FnROXTvto3aSnQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/google/go-github/v39 v39.2.0/go.mod h1:C1s8C5aCC9L+JXIYpJM5GYytdX52vC1bLvHEF1IhBrE=
|
|
|
|
|
github.com/google/go-querystring v1.1.0/go.mod h1:Kcdr2DB4koayq7X8pmAG4sNG59So17icRSOU623lUBU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/google/go-querystring v1.2.0 h1:yhqkPbu2/OH+V9BfpCVPZkNmUXhb2gBxJArfhIxNtP0=
|
|
|
|
|
github.com/google/go-querystring v1.2.0/go.mod h1:8IFJqpSRITyJ8QhQ13bmbeMBDfmeEJZD5A0egEOmkqU=
|
|
|
|
|
github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
|
|
|
|
|
github.com/google/jsonschema-go v0.4.2 h1:tmrUohrwoLZZS/P3x7ex0WAVknEkBZM46iALbcqoRA8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/google/jsonschema-go v0.4.2/go.mod h1:r5quNTdLOYEz95Ru18zA0ydNbBuYoo9tgaYcxEYhJVE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/google/pprof v0.0.0-20250317173921-a4b03ec1a45e h1:ijClszYn+mADRFY17kjQEVQ1XRhq2/JR1M3sGqeJoxs=
|
|
|
|
|
github.com/google/pprof v0.0.0-20250317173921-a4b03ec1a45e/go.mod h1:boTsfXsheKC2y+lKOCMpSfarhxDeIzfZG1jqGcPl3cA=
|
|
|
|
|
github.com/google/uuid v1.1.2/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=
|
|
|
|
|
github.com/google/uuid v1.6.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/gorilla/websocket v1.5.3 h1:saDtZ6Pbx/0u+bgYQ3q96pZgCzfhKXGPqt7kZ72aNNg=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/gorilla/websocket v1.5.3/go.mod h1:YR8l580nyteQvAITg2hZ9XVh4b55+EU/adAjf1fMHhE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/grpc-ecosystem/grpc-gateway v1.16.0/go.mod h1:BDjrQk3hbvj6Nolgz8mAMFbcEtjT1g+wF4CSlocrBnw=
|
|
|
|
|
github.com/hashicorp/go-version v1.7.0 h1:5tqGy27NaOTB8yJKUZELlFAS/LTKJkrmONwQKeRZfjY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/hashicorp/go-version v1.7.0/go.mod h1:fltr4n8CU8Ke44wwGCBoEymUuxUHl09ZGVZPK5anwXA=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/hashicorp/go-version v1.8.0 h1:KAkNb1HAiZd1ukkxDFGmokVZe1Xy9HG6NUp+bPle2i4=
|
|
|
|
|
github.com/hashicorp/go-version v1.8.0/go.mod h1:fltr4n8CU8Ke44wwGCBoEymUuxUHl09ZGVZPK5anwXA=
|
|
|
|
|
github.com/hashicorp/golang-lru/v2 v2.0.7 h1:a+bsQ5rvGLjzHuww6tVxozPZFVghXaHOwFs4luLUK2k=
|
|
|
|
|
github.com/hashicorp/golang-lru/v2 v2.0.7/go.mod h1:QeFd9opnmA6QUJc5vARoKUSoFhyfM2/ZepoAG6RGpeM=
|
|
|
|
|
github.com/hexops/gotextdiff v1.0.3 h1:gitA9+qJrrTCsiCl7+kh75nPqQt1cx4ZkudSTLoUqJM=
|
|
|
|
|
github.com/hexops/gotextdiff v1.0.3/go.mod h1:pSWU5MAI3yDq+fZBTazCSJysOMbxWL1BSow5/V2vxeg=
|
|
|
|
|
github.com/inconshreveable/mousetrap v1.1.0 h1:wN+x4NVGpMsO7ErUn/mUI3vEoE6Jt13X2s0bqwp9tc8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/inconshreveable/mousetrap v1.1.0/go.mod h1:vpF70FUmC8bwa3OWnCshd2FqLfsEA9PFc4w1p2J65bw=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/jbenet/go-context v0.0.0-20150711004518-d14ea06fba99 h1:BQSFePA1RWJOlocH6Fxy8MmwDt+yVQYULKfN0RoTN8A=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/jbenet/go-context v0.0.0-20150711004518-d14ea06fba99/go.mod h1:1lJo3i6rXxKeerYnT8Nvf0QmHCRC1n8sfWVwXF2Frvo=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/jchv/go-winloader v0.0.0-20250406163304-c1995be93bd1 h1:njuLRcjAuMKr7kI3D85AXWkw6/+v9PwtV6M6o11sWHQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/jchv/go-winloader v0.0.0-20250406163304-c1995be93bd1/go.mod h1:alcuEEnZsY1WQsagKhZDsoPCRoOijYqhZvPwLG0kzVs=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/josharian/intern v1.0.0 h1:vlS4z54oSdjm0bgjRigI+G1HpF+tI+9rE5LLzOg8HmY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/josharian/intern v1.0.0/go.mod h1:5DoeVV0s6jJacbCEi61lwdGj/aVlrQvzHFFd8Hwg//Y=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/json-iterator/go v1.1.12 h1:PV8peI4a0ysnczrg+LtxykD8LfKY9ML6u2jnxaEnrnM=
|
|
|
|
|
github.com/json-iterator/go v1.1.12/go.mod h1:e30LSqwooZae/UwlEbR2852Gd8hjQvJoHmT4TnhNGBo=
|
|
|
|
|
github.com/jung-kurt/gofpdf v1.0.0/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes=
|
|
|
|
|
github.com/jung-kurt/gofpdf v1.0.3-0.20190309125859-24315acbbda5/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes=
|
|
|
|
|
github.com/kevinburke/ssh_config v1.4.0 h1:6xxtP5bZ2E4NF5tuQulISpTO2z8XbtH8cg1PWkxoFkQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/kevinburke/ssh_config v1.4.0/go.mod h1:q2RIzfka+BXARoNexmF9gkxEX7DmvbW9P4hIVx2Kg4M=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/kevinburke/ssh_config v1.6.0 h1:J1FBfmuVosPHf5GRdltRLhPJtJpTlMdKTBjRgTaQBFY=
|
|
|
|
|
github.com/kevinburke/ssh_config v1.6.0/go.mod h1:q2RIzfka+BXARoNexmF9gkxEX7DmvbW9P4hIVx2Kg4M=
|
|
|
|
|
github.com/kisielk/errcheck v1.5.0/go.mod h1:pFxgyoBC7bSaBwPgfKdkLd5X25qrDl4LWUI2bnpBCr8=
|
|
|
|
|
github.com/kisielk/gotool v1.0.0/go.mod h1:XhKaO+MFFWcvkIS/tQcRk01m1F5IRFswLeQ+oQHNcck=
|
|
|
|
|
github.com/klauspost/asmfmt v1.3.2 h1:4Ri7ox3EwapiOjCki+hw14RyKk201CN4rzyCJRFLpK4=
|
|
|
|
|
github.com/klauspost/asmfmt v1.3.2/go.mod h1:AG8TuvYojzulgDAMCnYn50l/5QV3Bs/tp6j0HLHbNSE=
|
|
|
|
|
github.com/klauspost/compress v1.13.1/go.mod h1:8dP1Hq4DHOhN9w426knH3Rhby4rFm6D8eO+e+Dq5Gzg=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/klauspost/compress v1.18.3 h1:9PJRvfbmTabkOX8moIpXPbMMbYN60bWImDDU7L+/6zw=
|
|
|
|
|
github.com/klauspost/compress v1.18.3/go.mod h1:R0h/fSBs8DE4ENlcrlib3PsXS61voFxhIs2DeRhCvJ4=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/klauspost/compress v1.18.4 h1:RPhnKRAQ4Fh8zU2FY/6ZFDwTVTxgJ/EMydqSTzE9a2c=
|
|
|
|
|
github.com/klauspost/compress v1.18.4/go.mod h1:R0h/fSBs8DE4ENlcrlib3PsXS61voFxhIs2DeRhCvJ4=
|
|
|
|
|
github.com/klauspost/cpuid/v2 v2.0.9/go.mod h1:FInQzS24/EEf25PyTYn52gqo7WaD8xa0213Md/qVLRg=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/klauspost/cpuid/v2 v2.3.0 h1:S4CRMLnYUhGeDFDqkGriYKdfoFlDnMtqTiI/sFzhA9Y=
|
|
|
|
|
github.com/klauspost/cpuid/v2 v2.3.0/go.mod h1:hqwkgyIinND0mEev00jJYCxPNVRVXFQeu1XKlok6oO0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/kluctl/go-embed-python v0.0.0-3.13.1-20241219-1 h1:x1cSEj4Ug5mpuZgUHLvUmlc5r//KHFn6iYiRSrRcVy4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/kluctl/go-embed-python v0.0.0-3.13.1-20241219-1/go.mod h1:3ebNU9QBrNpUO+Hj6bHaGpkh5pymDHQ+wwVPHTE4mCE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/knz/go-libedit v1.10.1/go.mod h1:MZTVkCWyz0oBc7JOWP3wNAzd002ZbM/5hgShxwh4x8M=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/kr/pretty v0.1.0/go.mod h1:dAy3ld7l9f0ibDNOQOHHMYYIIbhfbHSm3C4ZsoJORNo=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/kr/pretty v0.3.1 h1:flRD4NNwYAUpkphVc1HcthR4KEIFJ65n8Mw5qdRn3LE=
|
|
|
|
|
github.com/kr/pretty v0.3.1/go.mod h1:hoEshYVHaxMs3cyo3Yncou5ZscifuDolrwPKZanG3xk=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ=
|
|
|
|
|
github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY=
|
|
|
|
|
github.com/kr/text v0.2.0/go.mod h1:eLer722TekiGuMkidMxC/pM04lWEeraHUUmBw8l2grE=
|
|
|
|
|
github.com/leaanthony/debme v1.2.1 h1:9Tgwf+kjcrbMQ4WnPcEIUcQuIZYqdWftzZkBr+i/oOc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/leaanthony/debme v1.2.1/go.mod h1:3V+sCm5tYAgQymvSOfYQ5Xx2JCr+OXiD9Jkw3otUjiA=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/leaanthony/go-ansi-parser v1.6.1 h1:xd8bzARK3dErqkPFtoF9F3/HgN8UQk0ed1YDKpEz01A=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/leaanthony/go-ansi-parser v1.6.1/go.mod h1:+vva/2y4alzVmmIEpk9QDhA7vLC5zKDTRwfZGOp3IWU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/leaanthony/gosod v1.0.4 h1:YLAbVyd591MRffDgxUOU1NwLhT9T1/YiwjKZpkNFeaI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/leaanthony/gosod v1.0.4/go.mod h1:GKuIL0zzPj3O1SdWQOdgURSuhkF+Urizzxh26t9f1cw=
|
|
|
|
|
github.com/leaanthony/slicer v1.5.0/go.mod h1:FwrApmf8gOrpzEWM2J/9Lh79tyq8KTX5AzRtwV7m4AY=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/leaanthony/slicer v1.6.0 h1:1RFP5uiPJvT93TAHi+ipd3NACobkW53yUiBqZheE/Js=
|
|
|
|
|
github.com/leaanthony/slicer v1.6.0/go.mod h1:o/Iz29g7LN0GqH3aMjWAe90381nyZlDNquK+mtH2Fj8=
|
|
|
|
|
github.com/leaanthony/u v1.1.1 h1:TUFjwDGlNX+WuwVEzDqQwC2lOv0P4uhTQw7CMFdiK7M=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/leaanthony/u v1.1.1/go.mod h1:9+o6hejoRljvZ3BzdYlVL0JYCwtnAsVuN9pVTQcaRfI=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/leodido/go-urn v1.4.0 h1:WT9HwE9SGECu3lg4d/dIA+jxlljEa1/ffXKmRjqdmIQ=
|
|
|
|
|
github.com/leodido/go-urn v1.4.0/go.mod h1:bvxc+MVxLKB4z00jd1z+Dvzr47oO32F/QSNjSBOlFxI=
|
|
|
|
|
github.com/lmittmann/tint v1.1.2 h1:2CQzrL6rslrsyjqLDwD11bZ5OpLBPU+g3G/r5LSfS8w=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/lmittmann/tint v1.1.2/go.mod h1:HIS3gSy7qNwGCj+5oRjAutErFBl4BzdQP6cJZ0NfMwE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/lucasb-eyer/go-colorful v1.3.0 h1:2/yBRLdWBZKrf7gB40FoiKfAWYQ0lqNcbuQwVHXptag=
|
|
|
|
|
github.com/lucasb-eyer/go-colorful v1.3.0/go.mod h1:R4dSotOR9KMtayYi1e77YzuveK+i7ruzyGqttikkLy0=
|
|
|
|
|
github.com/mailru/easyjson v0.9.1 h1:LbtsOm5WAswyWbvTEOqhypdPeZzHavpZx96/n553mR8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/mailru/easyjson v0.9.1/go.mod h1:1+xMtQp2MRNVL/V1bOzuP3aP8VNwRW55fQUto+XFtTU=
|
|
|
|
|
github.com/marcboeker/go-duckdb v1.8.5 h1:tkYp+TANippy0DaIOP5OEfBEwbUINqiFqgwMQ44jME0=
|
|
|
|
|
github.com/marcboeker/go-duckdb v1.8.5/go.mod h1:6mK7+WQE4P4u5AFLvVBmhFxY5fvhymFptghgJX6B+/8=
|
|
|
|
|
github.com/matryer/is v1.4.0/go.mod h1:8I/i5uYgLzgsgEloJE1U6xx5HkBQpAZvepWuujKwMRU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/matryer/is v1.4.1 h1:55ehd8zaGABKLXQUe2awZ99BD/PTc2ls+KV/dXphgEQ=
|
|
|
|
|
github.com/matryer/is v1.4.1/go.mod h1:8I/i5uYgLzgsgEloJE1U6xx5HkBQpAZvepWuujKwMRU=
|
|
|
|
|
github.com/mattn/go-colorable v0.1.14 h1:9A9LHSqF/7dyVVX6g0U9cwm9pG3kP9gSzcuIPHPsaIE=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/mattn/go-colorable v0.1.14/go.mod h1:6LmQG8QLFO4G5z1gPvYEzlUgJ2wF+stgPZH1UqBm1s8=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/mattn/go-isatty v0.0.20 h1:xfD0iDuEKnDkl03q4limB+vH+GxLEtL/jb4xVJSWWEY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/mattn/go-isatty v0.0.20/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/mattn/go-localereader v0.0.1 h1:ygSAOl7ZXTx4RdPYinUpg6W99U8jWvWi9Ye2JC/oIi4=
|
|
|
|
|
github.com/mattn/go-localereader v0.0.1/go.mod h1:8fBrzywKY7BI3czFoHkuzRoWE9C+EiG4R1k4Cjx5p88=
|
|
|
|
|
github.com/mattn/go-runewidth v0.0.19 h1:v++JhqYnZuu5jSKrk9RbgF5v4CGUjqRfBm05byFGLdw=
|
|
|
|
|
github.com/mattn/go-runewidth v0.0.19/go.mod h1:XBkDxAl56ILZc9knddidhrOlY5R/pDhgLpndooCuJAs=
|
|
|
|
|
github.com/minio/asm2plan9s v0.0.0-20200509001527-cdd76441f9d8 h1:AMFGa4R4MiIpspGNG7Z948v4n35fFGB3RR3G/ry4FWs=
|
|
|
|
|
github.com/minio/asm2plan9s v0.0.0-20200509001527-cdd76441f9d8/go.mod h1:mC1jAcsrzbxHt8iiaC+zU4b1ylILSosueou12R++wfY=
|
|
|
|
|
github.com/minio/c2goasm v0.0.0-20190812172519-36a3d3bbc4f3 h1:+n/aFZefKZp7spd8DFdX7uMikMLXX4oubIzJF4kv/wI=
|
|
|
|
|
github.com/minio/c2goasm v0.0.0-20190812172519-36a3d3bbc4f3/go.mod h1:RagcQ7I8IeTMnF8JTXieKnO4Z6JCsikNEzj0DwauVzE=
|
|
|
|
|
github.com/minio/selfupdate v0.6.0 h1:i76PgT0K5xO9+hjzKcacQtO7+MjJ4JKA8Ak8XQ9DDwU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/minio/selfupdate v0.6.0/go.mod h1:bO02GTIPCMQFTEvE5h4DjYB58bCoZ35XLeBf0buTDdM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/mitchellh/colorstring v0.0.0-20190213212951-d06e56a500db h1:62I3jR2EmQ4l5rM/4FEfDWcRD+abF5XlKShorW5LRoQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/mitchellh/colorstring v0.0.0-20190213212951-d06e56a500db/go.mod h1:l0dey0ia/Uv7NcFFVbCLtqEBQbrT4OCwCSKTEv6enCw=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/modelcontextprotocol/go-sdk v1.2.0 h1:Y23co09300CEk8iZ/tMxIX1dVmKZkzoSBZOpJwUnc/s=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/modelcontextprotocol/go-sdk v1.2.0/go.mod h1:6fM3LCm3yV7pAs8isnKLn07oKtB0MP9LHd3DfAcKw10=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/modelcontextprotocol/go-sdk v1.3.0 h1:gMfZkv3DzQF5q/DcQePo5rahEY+sguyPfXDfNBcT0Zs=
|
|
|
|
|
github.com/modelcontextprotocol/go-sdk v1.3.0/go.mod h1:AnQ//Qc6+4nIyyrB4cxBU7UW9VibK4iOZBeyP/rF1IE=
|
|
|
|
|
github.com/modern-go/concurrent v0.0.0-20180228061459-e0a39a4cb421/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
|
|
|
|
|
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd h1:TRLaZ9cD/w8PVh93nsPXa1VrQ6jlwL5oN8l14QlcNfg=
|
|
|
|
|
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
|
|
|
|
|
github.com/modern-go/reflect2 v1.0.2 h1:xBagoLtFs94CBntxluKeaWgTMpvLxC4ur3nMaC9Gz0M=
|
|
|
|
|
github.com/modern-go/reflect2 v1.0.2/go.mod h1:yWuevngMOJpCy52FWWMvUC8ws7m/LJsjYzDa0/r8luk=
|
|
|
|
|
github.com/mohae/deepcopy v0.0.0-20170929034955-c48cc78d4826 h1:RWengNIwukTxcDr9M+97sNutRR1RKhG96O6jWumTTnw=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/mohae/deepcopy v0.0.0-20170929034955-c48cc78d4826/go.mod h1:TaXosZuwdSHYgviHp1DAtfrULt5eUgsSMsZf+YrPgl8=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6 h1:ZK8zHtRHOkbHy6Mmr5D264iyp3TiX5OmNcI5cIARiQI=
|
|
|
|
|
github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6/go.mod h1:CJlz5H+gyd6CUWT45Oy4q24RdLyn7Md9Vj2/ldJBSIo=
|
|
|
|
|
github.com/muesli/cancelreader v0.2.2 h1:3I4Kt4BQjOR54NavqnDogx/MIoWBFa0StPA8ELUXHmA=
|
|
|
|
|
github.com/muesli/cancelreader v0.2.2/go.mod h1:3XuTXfFS2VjM+HTLZY9Ak0l6eUKfijIfMUZ4EgX0QYo=
|
|
|
|
|
github.com/muesli/termenv v0.16.0 h1:S5AlUN9dENB57rsbnkPyfdGuWIlkmzJjbFf0Tf5FWUc=
|
|
|
|
|
github.com/muesli/termenv v0.16.0/go.mod h1:ZRfOIKPFDYQoDFF4Olj7/QJbW60Ol/kL1pU3VfY/Cnk=
|
|
|
|
|
github.com/ncruces/go-strftime v1.0.0 h1:HMFp8mLCTPp341M/ZnA4qaf7ZlsbTc+miZjCLOFAw7w=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/ncruces/go-strftime v1.0.0/go.mod h1:Fwc5htZGVVkseilnfgOVb9mKy6w1naJmn9CehxcKcls=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/nlpodyssey/gopickle v0.3.0 h1:BLUE5gxFLyyNOPzlXxt6GoHEMMxD0qhsE4p0CIQyoLw=
|
|
|
|
|
github.com/nlpodyssey/gopickle v0.3.0/go.mod h1:f070HJ/yR+eLi5WmM1OXJEGaTpuJEUiib19olXgYha0=
|
|
|
|
|
github.com/oasdiff/oasdiff v1.11.9 h1:M/pIY4K1MWnML0DkAdUQU/CnJdNDr2z2hpD0lpKSccM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/oasdiff/oasdiff v1.11.9/go.mod h1:4qorAPsG2EE/lXEs+FGzAJcYHXS3G7XghfqkCFPKzNQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/oasdiff/oasdiff v1.11.10 h1:4I9VrktUoHmwydkJqVOC7Bd6BXKu9dc4UUP3PIu1VjM=
|
|
|
|
|
github.com/oasdiff/oasdiff v1.11.10/go.mod h1:GXARzmqBKN8lZHsTQD35ZM41ePbu6JdAZza4sRMeEKg=
|
|
|
|
|
github.com/oasdiff/yaml v0.0.0-20250309154309-f31be36b4037 h1:G7ERwszslrBzRxj//JalHPu/3yz+De2J+4aLtSRlHiY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/oasdiff/yaml v0.0.0-20250309154309-f31be36b4037/go.mod h1:2bpvgLBZEtENV5scfDFEtB/5+1M4hkQhDQrccEJ/qGw=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/oasdiff/yaml3 v0.0.0-20250309153720-d2182401db90 h1:bQx3WeLcUWy+RletIKwUIt4x3t8n2SxavmoclizMb8c=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/oasdiff/yaml3 v0.0.0-20250309153720-d2182401db90/go.mod h1:y5+oSEHCPT/DGrS++Wc/479ERge0zTFxaF8PbGKcg2o=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/olekukonko/cat v0.0.0-20250911104152-50322a0618f6 h1:zrbMGy9YXpIeTnGj4EljqMiZsIcE09mmF8XsD5AYOJc=
|
|
|
|
|
github.com/olekukonko/cat v0.0.0-20250911104152-50322a0618f6/go.mod h1:rEKTHC9roVVicUIfZK7DYrdIoM0EOr8mK1Hj5s3JjH0=
|
|
|
|
|
github.com/olekukonko/errors v1.2.0 h1:10Zcn4GeV59t/EGqJc8fUjtFT/FuUh5bTMzZ1XwmCRo=
|
|
|
|
|
github.com/olekukonko/errors v1.2.0/go.mod h1:ppzxA5jBKcO1vIpCXQ9ZqgDh8iwODz6OXIGKU8r5m4Y=
|
|
|
|
|
github.com/olekukonko/ll v0.1.6 h1:lGVTHO+Qc4Qm+fce/2h2m5y9LvqaW+DCN7xW9hsU3uA=
|
|
|
|
|
github.com/olekukonko/ll v0.1.6/go.mod h1:NVUmjBb/aCtUpjKk75BhWrOlARz3dqsM+OtszpY4o88=
|
|
|
|
|
github.com/olekukonko/tablewriter v1.1.3 h1:VSHhghXxrP0JHl+0NnKid7WoEmd9/urKRJLysb70nnA=
|
|
|
|
|
github.com/olekukonko/tablewriter v1.1.3/go.mod h1:9VU0knjhmMkXjnMKrZ3+L2JhhtsQ/L38BbL3CRNE8tM=
|
|
|
|
|
github.com/ollama/ollama v0.15.4 h1:y841GH5lsi5j5BTFyX/E+UOC3Yiw+JBfdjBVRGw+I0M=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/ollama/ollama v0.15.4/go.mod h1:4Yn3jw2hZ4VqyJ1XciYawDRE8bzv4RT3JiVZR1kCfwE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/ollama/ollama v0.16.1 h1:DIxnLdS0om3hb7HheJqj6+ZnPCCMWmy/vyUxiQgRYoI=
|
|
|
|
|
github.com/ollama/ollama v0.16.1/go.mod h1:FEk95NbAJJZk+t7cLh+bPGTul72j1O3PLLlYNV3FVZ0=
|
|
|
|
|
github.com/onsi/gomega v1.34.1 h1:EUMJIKUjM8sKjYbtxQI9A4z2o+rruxnzNvpknOXie6k=
|
|
|
|
|
github.com/onsi/gomega v1.34.1/go.mod h1:kU1QgUvBDLXBJq618Xvm2LUX6rSAfRaFRTcdOeDLwwY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/parquet-go/bitpack v1.0.0 h1:AUqzlKzPPXf2bCdjfj4sTeacrUwsT7NlcYDMUQxPcQA=
|
|
|
|
|
github.com/parquet-go/bitpack v1.0.0/go.mod h1:XnVk9TH+O40eOOmvpAVZ7K2ocQFrQwysLMnc6M/8lgs=
|
|
|
|
|
github.com/parquet-go/jsonlite v1.0.0 h1:87QNdi56wOfsE5bdgas0vRzHPxfJgzrXGml1zZdd7VU=
|
|
|
|
|
github.com/parquet-go/jsonlite v1.0.0/go.mod h1:nDjpkpL4EOtqs6NQugUsi0Rleq9sW/OtC1NnZEnxzF0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/parquet-go/jsonlite v1.4.0 h1:RTG7prqfO0HD5egejU8MUDBN8oToMj55cgSV1I0zNW4=
|
|
|
|
|
github.com/parquet-go/jsonlite v1.4.0/go.mod h1:nDjpkpL4EOtqs6NQugUsi0Rleq9sW/OtC1NnZEnxzF0=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/parquet-go/parquet-go v0.27.0 h1:vHWK2xaHbj+v1DYps03yDRpEsdtOeKbhiXUaixoPb3g=
|
|
|
|
|
github.com/parquet-go/parquet-go v0.27.0/go.mod h1:navtkAYr2LGoJVp141oXPlO/sxLvaOe3la2JEoD8+rg=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/pdevine/tensor v0.0.0-20250402003834-09d804610a08 h1:vZ4pizbOryP551t6NZsKnZg+T3nZPGM5c/XSp0BF3nA=
|
|
|
|
|
github.com/pdevine/tensor v0.0.0-20250402003834-09d804610a08/go.mod h1:aYk25NARh+hXyib3siULrKzrIG0COs3Ty6qHLmmd6g4=
|
|
|
|
|
github.com/pelletier/go-toml/v2 v2.2.4 h1:mye9XuhQ6gvn5h28+VilKrrPoQVanw5PMw/TB0t5Ec4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/pelletier/go-toml/v2 v2.2.4/go.mod h1:2gIqNv+qfxSVS7cM2xJQKtLSTLUE9V8t9Stt+h56mCY=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/perimeterx/marshmallow v1.1.5 h1:a2LALqQ1BlHM8PZblsDdidgv1mWi1DgC2UmX50IvK2s=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/perimeterx/marshmallow v1.1.5/go.mod h1:dsXbUu8CRzfYP5a87xpp0xq9S3u0Vchtcl8we9tYaXw=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/phpdave11/gofpdf v1.4.2/go.mod h1:zpO6xFn9yxo3YLyMvW8HcKWVdbNqgIfOOp2dXMnm1mY=
|
|
|
|
|
github.com/phpdave11/gofpdi v1.0.12/go.mod h1:vBmVV0Do6hSBHC8uKUQ71JGW+ZGQq74llk/7bXwjDoI=
|
|
|
|
|
github.com/pierrec/lz4/v4 v4.1.8/go.mod h1:gZWDp/Ze/IJXGXf23ltt2EXimqmTUXEy0GFuRQyBid4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/pierrec/lz4/v4 v4.1.22 h1:cKFw6uJDK+/gfw5BcDL0JL5aBsAFdsIT18eRtLj7VIU=
|
|
|
|
|
github.com/pierrec/lz4/v4 v4.1.22/go.mod h1:gZWDp/Ze/IJXGXf23ltt2EXimqmTUXEy0GFuRQyBid4=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/pierrec/lz4/v4 v4.1.25 h1:kocOqRffaIbU5djlIBr7Wh+cx82C0vtFb0fOurZHqD0=
|
|
|
|
|
github.com/pierrec/lz4/v4 v4.1.25/go.mod h1:EoQMVJgeeEOMsCqCzqFm2O0cJvljX2nGZjcRIPL34O4=
|
|
|
|
|
github.com/pjbgf/sha1cd v0.5.0 h1:a+UkboSi1znleCDUNT3M5YxjOnN1fz2FhN48FlwCxs0=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/pjbgf/sha1cd v0.5.0/go.mod h1:lhpGlyHLpQZoxMv8HcgXvZEhcGs0PG/vsZnEJ7H0iCM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/pkg/browser v0.0.0-20240102092130-5ac0b6a4141c h1:+mdjkGKdHQG3305AYmdv1U2eRNDiU2ErMBj1gwrq8eQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/pkg/browser v0.0.0-20240102092130-5ac0b6a4141c/go.mod h1:7rwL4CYBLnjLxUqIJNnCWiEdr3bn6IUYi15bNlnbCCU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/pkg/errors v0.8.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
|
|
|
|
|
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
|
|
|
|
|
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/pmezard/go-difflib v1.0.1-0.20181226105442-5d4384ee4fb2 h1:Jamvg5psRIccs7FGNTlIRMkT8wgtp5eCXdBlqhYGL6U=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/pmezard/go-difflib v1.0.1-0.20181226105442-5d4384ee4fb2/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/prometheus/client_model v0.0.0-20190812154241-14fe0d1b01d4/go.mod h1:xMI15A0UPsDsEKsMN9yxemIoYk6Tm2C1GtYGdfGttqA=
|
|
|
|
|
github.com/qdrant/go-client v1.16.2 h1:UUMJJfvXTByhwhH1DwWdbkhZ2cTdvSqVkXSIfBrVWSg=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/qdrant/go-client v1.16.2/go.mod h1:I+EL3h4HRoRTeHtbfOd/4kDXwCukZfkd41j/9wryGkw=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/quic-go/qpack v0.6.0 h1:g7W+BMYynC1LbYLSqRt8PBg5Tgwxn214ZZR34VIOjz8=
|
|
|
|
|
github.com/quic-go/qpack v0.6.0/go.mod h1:lUpLKChi8njB4ty2bFLX2x4gzDqXwUpaO1DP9qMDZII=
|
|
|
|
|
github.com/quic-go/quic-go v0.59.0 h1:OLJkp1Mlm/aS7dpKgTc6cnpynnD2Xg7C1pwL6vy/SAw=
|
|
|
|
|
github.com/quic-go/quic-go v0.59.0/go.mod h1:upnsH4Ju1YkqpLXC305eW3yDZ4NfnNbmQRCMWS58IKU=
|
|
|
|
|
github.com/remyoudompheng/bigfft v0.0.0-20230129092748-24d4a6f8daec h1:W09IVJc94icq4NjY3clb7Lk8O1qJ8BdBEF8z0ibU0rE=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/remyoudompheng/bigfft v0.0.0-20230129092748-24d4a6f8daec/go.mod h1:qqbHyh8v60DhA7CoWK5oRCqLrMHRGoxYCSS9EjAz6Eo=
|
|
|
|
|
github.com/rivo/uniseg v0.2.0/go.mod h1:J6wj4VEh+S6ZtnVlnTBMWIodfgj8LQOQFoIToxlJtxc=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/rivo/uniseg v0.4.7 h1:WUdvkW8uEhrYfLC4ZzdpI2ztxP1I582+49Oc5Mq64VQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/rivo/uniseg v0.4.7/go.mod h1:FN3SvrM+Zdj16jyLfmOkMNblXMcoc8DfTHruCPUcx88=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/rogpeppe/fastuuid v1.2.0/go.mod h1:jVj6XXZzXRy/MSR5jhDC/2q6DgLz+nrA6LYCDYWNEvQ=
|
|
|
|
|
github.com/rogpeppe/go-internal v1.14.1 h1:UQB4HGPB6osV0SQTLymcB4TgvyWu6ZyliaW0tI/otEQ=
|
|
|
|
|
github.com/rogpeppe/go-internal v1.14.1/go.mod h1:MaRKkUm5W0goXpeCfT7UZI6fk/L7L7so1lCWt35ZSgc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/ruudk/golang-pdf417 v0.0.0-20181029194003-1af4ab5afa58/go.mod h1:6lfFZQK844Gfx8o5WFuvpxWRwnSoipWe/p622j1v06w=
|
|
|
|
|
github.com/sagikazarmark/locafero v0.11.0 h1:1iurJgmM9G3PA/I+wWYIOw/5SyBtxapeHDcg+AAIFXc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/sagikazarmark/locafero v0.11.0/go.mod h1:nVIGvgyzw595SUSUE6tvCp3YYTeHs15MvlmU87WwIik=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/sagikazarmark/locafero v0.12.0 h1:/NQhBAkUb4+fH1jivKHWusDYFjMOOKU88eegjfxfHb4=
|
|
|
|
|
github.com/sagikazarmark/locafero v0.12.0/go.mod h1:sZh36u/YSZ918v0Io+U9ogLYQJ9tLLBmM4eneO6WwsI=
|
|
|
|
|
github.com/samber/lo v1.52.0 h1:Rvi+3BFHES3A8meP33VPAxiBZX/Aws5RxrschYGjomw=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/samber/lo v1.52.0/go.mod h1:4+MXEGsJzbKGaUEQFKBq2xtfuznW9oz/WrgyzMzRoM0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/schollz/progressbar/v3 v3.19.0 h1:Ea18xuIRQXLAUidVDox3AbwfUhD0/1IvohyTutOIFoc=
|
|
|
|
|
github.com/schollz/progressbar/v3 v3.19.0/go.mod h1:IsO3lpbaGuzh8zIMzgY3+J8l4C8GjO0Y9S69eFvNsec=
|
|
|
|
|
github.com/sergi/go-diff v1.4.0 h1:n/SP9D5ad1fORl+llWyN+D6qoUETXNZARKjyY2/KVCw=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/sergi/go-diff v1.4.0/go.mod h1:A0bzQcvG0E7Rwjx0REVgAGH58e96+X0MeOfepqsbeW4=
|
|
|
|
|
github.com/sirupsen/logrus v1.7.0/go.mod h1:yWOB1SBYBC5VeMP7gHvWumXLIWorT60ONWic61uBYv0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/sirupsen/logrus v1.9.3 h1:dueUQJ1C2q9oE3F7wvmSGAaVtTmUizReu6fjN8uqzbQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/sirupsen/logrus v1.9.3/go.mod h1:naHLuLoDiP4jHNo9R0sCBMtWGeIprob74mVsIT4qYEQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/skeema/knownhosts v1.3.2 h1:EDL9mgf4NzwMXCTfaxSD/o/a5fxDw/xL9nkU28JjdBg=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/skeema/knownhosts v1.3.2/go.mod h1:bEg3iQAuw+jyiw+484wwFJoKSLwcfd7fqRy+N0QTiow=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/sourcegraph/conc v0.3.1-0.20240121214520-5f936abd7ae8 h1:+jumHNA0Wrelhe64i8F6HNlS8pkoyMv5sreGx2Ry5Rw=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/sourcegraph/conc v0.3.1-0.20240121214520-5f936abd7ae8/go.mod h1:3n1Cwaq1E1/1lhQhtRK2ts/ZwZEhjcQeJQ1RuC6Q/8U=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/spf13/afero v1.15.0 h1:b/YBCLWAJdFWJTN9cLhiXXcD7mzKn9Dm86dNnfyQw1I=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/spf13/afero v1.15.0/go.mod h1:NC2ByUVxtQs4b3sIUphxK0NioZnmxgyCrfzeuq8lxMg=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/spf13/cast v1.10.0 h1:h2x0u2shc1QuLHfxi+cTJvs30+ZAHOGRic8uyGTDWxY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/spf13/cast v1.10.0/go.mod h1:jNfB8QC9IA6ZuY2ZjDp0KtFO2LZZlg4S/7bzP6qqeHo=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/spf13/cobra v1.10.2 h1:DMTTonx5m65Ic0GOoRY2c16WCbHxOOw6xxezuLaBpcU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/spf13/cobra v1.10.2/go.mod h1:7C1pvHqHw5A4vrJfjNwvOdzYu0Gml16OCs2GRiTUUS4=
|
|
|
|
|
github.com/spf13/pflag v1.0.9/go.mod h1:McXfInJRrz4CZXVZOBLb0bTZqETkiAhM9Iw0y3An2Bg=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/spf13/pflag v1.0.10 h1:4EBh2KAYBwaONj6b2Ye1GiHfwjqyROoF4RwYO+vPwFk=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/spf13/pflag v1.0.10/go.mod h1:McXfInJRrz4CZXVZOBLb0bTZqETkiAhM9Iw0y3An2Bg=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/spf13/viper v1.21.0 h1:x5S+0EU27Lbphp4UKm1C+1oQO+rKx36vfCoaVebLFSU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/spf13/viper v1.21.0/go.mod h1:P0lhsswPGWD/1lZJ9ny3fYnVqxiegrlNrEmgLjbTCAY=
|
|
|
|
|
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/stretchr/objx v0.4.0/go.mod h1:YvHI0jy2hoMjB+UWwv71VJQ9isScKT/TqJzVSSt89Yw=
|
|
|
|
|
github.com/stretchr/objx v0.5.0/go.mod h1:Yh+to48EsGEfYuaHDzXPcE3xhTkx73EhmCGUpEOglKo=
|
|
|
|
|
github.com/stretchr/objx v0.5.2/go.mod h1:FRsXN1f5AsAjCGJKqEizvkpNtU+EGNCLh3NxZ/8L+MA=
|
|
|
|
|
github.com/stretchr/testify v1.1.4/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/stretchr/testify v1.3.0/go.mod h1:M5WIy9Dh21IEIfnGCwXGc5bZfKNJtfHm1UVUgZn+9EI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/stretchr/testify v1.4.0/go.mod h1:j7eGeouHqKxXV5pUuKE4zz7dFj8WfuZ+81PSLYec5m4=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/stretchr/testify v1.5.1/go.mod h1:5W2xD1RspED5o8YsWQXVCued0rvSQ+mT+I5cxcmMvtA=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/stretchr/testify v1.7.0/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/stretchr/testify v1.7.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
|
|
|
|
|
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
|
|
|
|
|
github.com/stretchr/testify v1.8.4/go.mod h1:sz/lmYIOXD/1dqDmKjjqLyZ2RngseejIcXlSw2iwfAo=
|
|
|
|
|
github.com/stretchr/testify v1.10.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
|
|
|
|
|
github.com/stretchr/testify v1.11.1 h1:7s2iGBzp5EwR7/aIZr8ao5+dra3wiQyKjjFuvgVKu7U=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/stretchr/testify v1.11.1/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/subosito/gotenv v1.6.0 h1:9NlTDc1FTs4qu0DDq7AEtTPNw6SVm7uBMsUCUjABIf8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/subosito/gotenv v1.6.0/go.mod h1:Dk4QP5c2W3ibzajGcXpNraDfq2IrhjMIvMSWPKKo0FU=
|
|
|
|
|
github.com/tidwall/gjson v1.14.2/go.mod h1:/wbyibRr2FHMks5tjHJ5F8dMZh3AcwJEMf5vlfC0lxk=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/tidwall/gjson v1.18.0 h1:FIDeeyB800efLX89e5a8Y0BNH+LOngJyGrIWxG2FKQY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/tidwall/gjson v1.18.0/go.mod h1:/wbyibRr2FHMks5tjHJ5F8dMZh3AcwJEMf5vlfC0lxk=
|
|
|
|
|
github.com/tidwall/match v1.1.1/go.mod h1:eRSPERbgtNPcGhD8UCthc6PmLEQXEWd3PRB5JTxsfmM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/tidwall/match v1.2.0 h1:0pt8FlkOwjN2fPt4bIl4BoNxb98gGHN2ObFEDkrfZnM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/tidwall/match v1.2.0/go.mod h1:eRSPERbgtNPcGhD8UCthc6PmLEQXEWd3PRB5JTxsfmM=
|
|
|
|
|
github.com/tidwall/pretty v1.2.0/go.mod h1:ITEVvHYasfjBbM0u2Pg8T2nJnzm8xPwvNhhsoaGGjNU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/tidwall/pretty v1.2.1 h1:qjsOFOWWQl+N3RsoF5/ssm1pHmJJwhjlSbZ51I6wMl4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/tidwall/pretty v1.2.1/go.mod h1:ITEVvHYasfjBbM0u2Pg8T2nJnzm8xPwvNhhsoaGGjNU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/tidwall/sjson v1.2.5 h1:kLy8mja+1c9jlljvWTlSazM7cKDRfJuR/bOJhcY5NcY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/tidwall/sjson v1.2.5/go.mod h1:Fvgq9kS/6ociJEDnK0Fk1cpYF4FIW6ZF7LAe+6jwd28=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/twitchyliquid64/golang-asm v0.15.1 h1:SU5vSMR7hnwNxj24w34ZyCi/FmDZTkS4MhqMhdFk5YI=
|
|
|
|
|
github.com/twitchyliquid64/golang-asm v0.15.1/go.mod h1:a1lVb/DtPvCB8fslRZhAngC2+aY1QWCk3Cedj/Gdt08=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/twpayne/go-geom v1.6.1 h1:iLE+Opv0Ihm/ABIcvQFGIiFBXd76oBIar9drAwHFhR4=
|
|
|
|
|
github.com/twpayne/go-geom v1.6.1/go.mod h1:Kr+Nly6BswFsKM5sd31YaoWS5PeDDH2NftJTK7Gd028=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/ugorji/go/codec v1.3.0 h1:Qd2W2sQawAfG8XSvzwhBeoGq71zXOC/Q1E9y/wUcsUA=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/ugorji/go/codec v1.3.0/go.mod h1:pRBVtBSKl77K30Bv8R2P+cLSGaTtex6fsA2Wjqmfxj4=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/ugorji/go/codec v1.3.1 h1:waO7eEiFDwidsBN6agj1vJQ4AG7lh2yqXyOXqhgQuyY=
|
|
|
|
|
github.com/ugorji/go/codec v1.3.1/go.mod h1:pRBVtBSKl77K30Bv8R2P+cLSGaTtex6fsA2Wjqmfxj4=
|
|
|
|
|
github.com/ulikunitz/xz v0.5.15 h1:9DNdB5s+SgV3bQ2ApL10xRc35ck0DuIX/isZvIk+ubY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/ulikunitz/xz v0.5.15/go.mod h1:nbz6k7qbPmH4IRqmfOplQw/tblSgqTqBwxkY0oWt/14=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/unpoller/unifi/v5 v5.17.0 h1:e2yES/35+/Ddd6BsXOjXRhsO663uqI99PKleS9plF/w=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/unpoller/unifi/v5 v5.17.0/go.mod h1:vSIXIclPG9dpKxUp+pavfgENHWaTZXvDg7F036R1YCo=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/unpoller/unifi/v5 v5.18.0 h1:i9xecLeI9CU6m+5++TIm+zhdGS9f8KCUz8PuuzO7sSQ=
|
|
|
|
|
github.com/unpoller/unifi/v5 v5.18.0/go.mod h1:vSIXIclPG9dpKxUp+pavfgENHWaTZXvDg7F036R1YCo=
|
|
|
|
|
github.com/wI2L/jsondiff v0.7.0 h1:1lH1G37GhBPqCfp/lrs91rf/2j3DktX6qYAKZkLuCQQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/wI2L/jsondiff v0.7.0/go.mod h1:KAEIojdQq66oJiHhDyQez2x+sRit0vIzC9KeK0yizxM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/wailsapp/go-webview2 v1.0.23 h1:jmv8qhz1lHibCc79bMM/a/FqOnnzOGEisLav+a0b9P0=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/wailsapp/go-webview2 v1.0.23/go.mod h1:qJmWAmAmaniuKGZPWwne+uor3AHMB5PFhqiK0Bbj8kc=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/wailsapp/wails/v3 v3.0.0-alpha.64 h1:xAhLFVfdbg7XdZQ5mMQmBv2BglWu8hMqe50Z+3UJvBs=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/wailsapp/wails/v3 v3.0.0-alpha.64/go.mod h1:zvgNL/mlFcX8aRGu6KOz9AHrMmTBD+4hJRQIONqF/Yw=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/wk8/go-ordered-map/v2 v2.1.8 h1:5h/BUHu93oj4gIdvHHHGsScSTMijfx5PeYkE/fJgbpc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/wk8/go-ordered-map/v2 v2.1.8/go.mod h1:5nJHM5DyteebpVlHnWMV0rPz6Zp7+xBAnxjb1X5vnTw=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/woodsbury/decimal128 v1.4.0 h1:xJATj7lLu4f2oObouMt2tgGiElE5gO6mSWUjQsBgUlc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/woodsbury/decimal128 v1.4.0/go.mod h1:BP46FUrVjVhdTbKT+XuQh2xfQaGki9LMIRJSFuh6THU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/x448/float16 v0.8.4 h1:qLwI1I70+NjRFUR3zs1JPUCgaCXSh3SW62uAKT1mSBM=
|
|
|
|
|
github.com/x448/float16 v0.8.4/go.mod h1:14CWIYCyZA/cWjXOioeEpHeN/83MdbZDRQHoFcYsOfg=
|
|
|
|
|
github.com/xanzy/ssh-agent v0.3.3 h1:+/15pJfg/RsTxqYcX6fHqOXZwwMP+2VyYWJeWM2qQFM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/xanzy/ssh-agent v0.3.3/go.mod h1:6dzNDKs0J9rVPHPhaGCukekBHKqfl+L3KghI1Bc68Uw=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/xo/terminfo v0.0.0-20220910002029-abceb7e1c41e h1:JVG44RsyaB9T2KIHavMF/ppJZNG9ZpyihvCd0w101no=
|
|
|
|
|
github.com/xo/terminfo v0.0.0-20220910002029-abceb7e1c41e/go.mod h1:RbqR21r5mrJuqunuUZ/Dhy/avygyECGrLceyNeo4LiM=
|
|
|
|
|
github.com/xtgo/set v1.0.0 h1:6BCNBRv3ORNDQ7fyoJXRv+tstJz3m1JVFQErfeZz2pY=
|
|
|
|
|
github.com/xtgo/set v1.0.0/go.mod h1:d3NHzGzSa0NmB2NhFyECA+QdRp29oEn2xbT+TpeFoM8=
|
|
|
|
|
github.com/xyproto/randomstring v1.0.5 h1:YtlWPoRdgMu3NZtP45drfy1GKoojuR7hmRcnhZqKjWU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/xyproto/randomstring v1.0.5/go.mod h1:rgmS5DeNXLivK7YprL0pY+lTuhNQW3iGxZ18UQApw/E=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/yargevad/filepathx v1.0.0 h1:SYcT+N3tYGi+NvazubCNlvgIPbzAk7i7y2dwg3I5FYc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/yargevad/filepathx v1.0.0/go.mod h1:BprfX/gpYNJHJfc35GjRRpVcwWXS89gGulUIU5tK3tA=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/yosida95/uritemplate/v3 v3.0.2 h1:Ed3Oyj9yrmi9087+NczuL5BwkIc4wvTb5zIM+UJPGz4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/yosida95/uritemplate/v3 v3.0.2/go.mod h1:ILOh0sOhIJR3+L/8afwt/kE++YT040gmv5BQTMR2HP4=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/yuin/goldmark v1.1.27/go.mod h1:3hX8gzYuyVAZsxl0MRgGTJEmQBFcNTphYh9decYSb74=
|
|
|
|
|
github.com/yuin/goldmark v1.2.1/go.mod h1:3hX8gzYuyVAZsxl0MRgGTJEmQBFcNTphYh9decYSb74=
|
|
|
|
|
github.com/yuin/goldmark v1.3.5/go.mod h1:mwnBkeHKe2W/ZEtQ+71ViKU8L12m81fl3OWwC1Zlc8k=
|
|
|
|
|
github.com/yuin/goldmark v1.7.16 h1:n+CJdUxaFMiDUNnWC3dMWCIQJSkxH4uz3ZwQBkAlVNE=
|
|
|
|
|
github.com/yuin/goldmark v1.7.16/go.mod h1:ip/1k0VRfGynBgxOz0yCqHrbZXhcjxyuS66Brc7iBKg=
|
|
|
|
|
github.com/zeebo/assert v1.3.0 h1:g7C04CbJuIDKNPFHmsk4hwZDO5O+kntRxzaUoNXj+IQ=
|
|
|
|
|
github.com/zeebo/assert v1.3.0/go.mod h1:Pq9JiuJQpG8JLJdtkwrJESF0Foym2/D9XMU5ciN/wJ0=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/zeebo/xxh3 v1.1.0 h1:s7DLGDK45Dyfg7++yxI0khrfwq9661w9EN78eP/UZVs=
|
|
|
|
|
github.com/zeebo/xxh3 v1.1.0/go.mod h1:IisAie1LELR4xhVinxWS5+zf1lA4p0MW4T+w+W07F5s=
|
2026-02-16 13:47:52 +00:00
|
|
|
go.opentelemetry.io/auto/sdk v1.2.1 h1:jXsnJ4Lmnqd11kwkBV2LgLoFMZKizbCi5fNZ/ipaZ64=
|
|
|
|
|
go.opentelemetry.io/auto/sdk v1.2.1/go.mod h1:KRTj+aOaElaLi+wW1kO/DZRXwkF4C5xPbEe3ZiIhN7Y=
|
|
|
|
|
go.opentelemetry.io/otel v1.38.0 h1:RkfdswUDRimDg0m2Az18RKOsnI8UDzppJAtj01/Ymk8=
|
|
|
|
|
go.opentelemetry.io/otel v1.38.0/go.mod h1:zcmtmQ1+YmQM9wrNsTGV/q/uyusom3P8RxwExxkZhjM=
|
|
|
|
|
go.opentelemetry.io/otel/metric v1.38.0 h1:Kl6lzIYGAh5M159u9NgiRkmoMKjvbsKtYRwgfrA6WpA=
|
|
|
|
|
go.opentelemetry.io/otel/metric v1.38.0/go.mod h1:kB5n/QoRM8YwmUahxvI3bO34eVtQf2i4utNVLr9gEmI=
|
|
|
|
|
go.opentelemetry.io/otel/sdk v1.37.0 h1:ItB0QUqnjesGRvNcmAcU0LyvkVyGJ2xftD29bWdDvKI=
|
|
|
|
|
go.opentelemetry.io/otel/sdk v1.37.0/go.mod h1:VredYzxUvuo2q3WRcDnKDjbdvmO0sCzOvVAiY+yUkAg=
|
|
|
|
|
go.opentelemetry.io/otel/sdk v1.38.0 h1:l48sr5YbNf2hpCUj/FoGhW9yDkl+Ma+LrVl8qaM5b+E=
|
|
|
|
|
go.opentelemetry.io/otel/sdk/metric v1.37.0 h1:90lI228XrB9jCMuSdA0673aubgRobVZFhbjxHHspCPc=
|
|
|
|
|
go.opentelemetry.io/otel/sdk/metric v1.37.0/go.mod h1:cNen4ZWfiD37l5NhS+Keb5RXVWZWpRE+9WyVCpbo5ps=
|
|
|
|
|
go.opentelemetry.io/otel/sdk/metric v1.38.0 h1:aSH66iL0aZqo//xXzQLYozmWrXxyFkBJ6qT5wthqPoM=
|
|
|
|
|
go.opentelemetry.io/otel/trace v1.38.0 h1:Fxk5bKrDZJUH+AMyyIXGcFAPah0oRcT+LuNtJrmcNLE=
|
|
|
|
|
go.opentelemetry.io/otel/trace v1.38.0/go.mod h1:j1P9ivuFsTceSWe1oY+EeW3sc+Pp42sO++GHkg4wwhs=
|
|
|
|
|
go.opentelemetry.io/proto/otlp v0.7.0/go.mod h1:PqfVotwruBrMGOCsRd/89rSnXhoiJIqeYNgFYFoEGnI=
|
|
|
|
|
go.uber.org/mock v0.6.0 h1:hyF9dfmbgIX5EfOdasqLsWD6xqpNZlXblLB/Dbnwv3Y=
|
|
|
|
|
go.uber.org/mock v0.6.0/go.mod h1:KiVJ4BqZJaMj4svdfmHM0AUx4NJYO8ZNpPnZn1Z+BBU=
|
|
|
|
|
go.yaml.in/yaml/v3 v3.0.4 h1:tfq32ie2Jv2UxXFdLJdh3jXuOzWiL1fo0bu/FbuKpbc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
go.yaml.in/yaml/v3 v3.0.4/go.mod h1:DhzuOOF2ATzADvBadXxruRBLzYTpT36CKvDb3+aBEFg=
|
2026-02-16 13:47:52 +00:00
|
|
|
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6 h1:lGdhQUN/cnWdSH3291CUuxSEqc+AsGTiDxPP3r2J0l4=
|
|
|
|
|
go4.org/unsafe/assume-no-moving-gc v0.0.0-20231121144256-b99613f794b6/go.mod h1:FftLjUGFEDu5k8lt0ddY+HcrH/qU/0qk+H8j9/nTl3E=
|
|
|
|
|
golang.org/x/arch v0.24.0 h1:qlJ3M9upxvFfwRM51tTg3Yl+8CP9vCC1E7vlFpgv99Y=
|
|
|
|
|
golang.org/x/arch v0.24.0/go.mod h1:dNHoOeKiyja7GTvF9NJS1l3Z2yntpQNzgrjh1cU103A=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
|
|
|
|
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
|
|
|
|
|
golang.org/x/crypto v0.0.0-20210220033148-5ea612d1eb83/go.mod h1:jdWPYTVW3xRLrWPugEBEK3UY2ZEsg3UU495nc5E+M+I=
|
|
|
|
|
golang.org/x/crypto v0.0.0-20210513164829-c07d793c2f9a/go.mod h1:P+XmwS30IXTQdn5tA2iutPOUgjI07+tq3H3K9MVA1s8=
|
|
|
|
|
golang.org/x/crypto v0.0.0-20210817164053-32db794688a5/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
|
|
|
|
|
golang.org/x/crypto v0.0.0-20211209193657-4570a0811e8b/go.mod h1:IxCIyHEi3zRg3s0A5j5BB6A9Jmi73HwBIUl50j+osU4=
|
|
|
|
|
golang.org/x/crypto v0.0.0-20220622213112-05595931fe9d/go.mod h1:IxCIyHEi3zRg3s0A5j5BB6A9Jmi73HwBIUl50j+osU4=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/crypto v0.47.0 h1:V6e3FRj+n4dbpw86FJ8Fv7XVOql7TEwpHapKoMJ/GO8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/crypto v0.47.0/go.mod h1:ff3Y9VzzKbwSSEzWqJsJVBnWmRwRSHt/6Op5n9bQc4A=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/crypto v0.48.0 h1:/VRzVqiRSggnhY7gNRxPauEQ5Drw9haKdM0jqfcCFts=
|
|
|
|
|
golang.org/x/crypto v0.48.0/go.mod h1:r0kV5h3qnFPlQnBSrULhlsRfryS2pmewsg+XfMgkVos=
|
|
|
|
|
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
|
|
|
|
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
|
|
|
|
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
|
|
|
|
golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
|
|
|
|
golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
|
|
|
|
golang.org/x/exp v0.0.0-20191002040644-a1355ae1e2c3/go.mod h1:NOZ3BPKG0ec/BKJQgnvsSFpcKLM5xXVWnvZS97DWHgE=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/exp v0.0.0-20260112195511-716be5621a96 h1:Z/6YuSHTLOHfNFdb8zVZomZr7cqNgTJvA8+Qz75D8gU=
|
|
|
|
|
golang.org/x/exp v0.0.0-20260112195511-716be5621a96/go.mod h1:nzimsREAkjBCIEFtHiYkrJyT+2uy9YZJB7H1k68CXZU=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/exp v0.0.0-20260212183809-81e46e3db34a h1:ovFr6Z0MNmU7nH8VaX5xqw+05ST2uO1exVfZPVqRC5o=
|
|
|
|
|
golang.org/x/exp v0.0.0-20260212183809-81e46e3db34a/go.mod h1:K79w1Vqn7PoiZn+TkNpx3BUWUQksGO3JcVX6qIjytmA=
|
|
|
|
|
golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
|
|
|
|
|
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
|
|
|
|
|
golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
|
|
|
|
golang.org/x/image v0.0.0-20190910094157-69e4b8554b2a/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
|
|
|
|
golang.org/x/image v0.0.0-20200119044424-58c23975cae1/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
|
|
|
|
golang.org/x/image v0.0.0-20200430140353-33d19683fad8/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
|
|
|
|
golang.org/x/image v0.0.0-20200618115811-c13761719519/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
|
|
|
|
golang.org/x/image v0.0.0-20201208152932-35266b937fa6/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
|
|
|
|
golang.org/x/image v0.0.0-20210216034530-4410531fe030/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
|
|
|
|
|
golang.org/x/image v0.36.0 h1:Iknbfm1afbgtwPTmHnS2gTM/6PPZfH+z2EFuOkSbqwc=
|
|
|
|
|
golang.org/x/image v0.36.0/go.mod h1:YsWD2TyyGKiIX1kZlu9QfKIsQ4nAAK9bdgdrIsE7xy4=
|
|
|
|
|
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
|
|
|
|
|
golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU=
|
|
|
|
|
golang.org/x/lint v0.0.0-20190313153728-d0100b6bd8b3/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc=
|
|
|
|
|
golang.org/x/lint v0.0.0-20210508222113-6edffad5e616/go.mod h1:3xt1FjdF8hUf6vQPIChWIBhFzV8gjjsPE/fR3IyQdNY=
|
|
|
|
|
golang.org/x/mobile v0.0.0-20190719004257-d2bd2a29d028/go.mod h1:E/iHnbuqvinMTCcRqshq8CkpyQDoeVncDDYHnLhea+o=
|
|
|
|
|
golang.org/x/mod v0.1.0/go.mod h1:0QHyrYULN0/3qlju5TqG8bIK38QM8yzMo5ekMj3DlcY=
|
|
|
|
|
golang.org/x/mod v0.1.1-0.20191105210325-c90efee705ee/go.mod h1:QqPTAvyqsEbceGzBzNggFXnrqF1CaUcvgkdR5Ot7KZg=
|
|
|
|
|
golang.org/x/mod v0.2.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
|
|
|
|
|
golang.org/x/mod v0.3.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
|
|
|
|
|
golang.org/x/mod v0.4.2/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/mod v0.32.0 h1:9F4d3PHLljb6x//jOyokMv3eX+YDeepZSEo3mFJy93c=
|
|
|
|
|
golang.org/x/mod v0.32.0/go.mod h1:SgipZ/3h2Ci89DlEtEXWUk/HteuRin+HHhN+WbNhguU=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/mod v0.33.0 h1:tHFzIWbBifEmbwtGz65eaWyGiGZatSrT9prnU8DbVL8=
|
|
|
|
|
golang.org/x/mod v0.33.0/go.mod h1:swjeQEj+6r7fODbD2cqrnje9PnziFuw4bmLbBZFrQ5w=
|
|
|
|
|
golang.org/x/net v0.0.0-20180724234803-3673e40ba225/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
|
|
|
|
|
golang.org/x/net v0.0.0-20180826012351-8a410e7b638d/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
|
|
|
|
|
golang.org/x/net v0.0.0-20190108225652-1e06a53dbb7e/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
|
|
|
|
|
golang.org/x/net v0.0.0-20190213061140-3a22650c66bd/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
|
|
|
|
|
golang.org/x/net v0.0.0-20190311183353-d8887717615a/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
|
|
|
|
|
golang.org/x/net v0.0.0-20190603091049-60506f45cf65/go.mod h1:HSz+uSET+XFnRR8LxR5pz3Of3rY3CfYBVs4xY44aLks=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
|
|
|
|
|
golang.org/x/net v0.0.0-20200226121028-0de0cce0169b/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
|
|
|
|
|
golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81Ro3o1hOxt32SMVPicZroKQ2sZA=
|
|
|
|
|
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/net v0.0.0-20210226172049-e18ecbb05110/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
|
|
|
|
|
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/net v0.0.0-20211112202133-69e39bad7dc2/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/net v0.49.0 h1:eeHFmOGUTtaaPSGNmjBKpbng9MulQsJURQUAfUwY++o=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/net v0.49.0/go.mod h1:/ysNB2EvaqvesRkuLAyjI1ycPZlQHM3q01F02UY/MV8=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/net v0.50.0 h1:ucWh9eiCGyDR3vtzso0WMQinm2Dnt8cFMuQa9K33J60=
|
|
|
|
|
golang.org/x/net v0.50.0/go.mod h1:UgoSli3F/pBgdJBHCTc+tp3gmrU4XswgGRgtnwWTfyM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
|
|
|
|
|
golang.org/x/oauth2 v0.34.0 h1:hqK/t4AKgbqWkdkcAeI8XLmbK+4m4G5YeQRrmiotGlw=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/oauth2 v0.34.0/go.mod h1:lzm5WQJQwKZ3nwavOZ3IS5Aulzxi68dUSgRHujetwEA=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/oauth2 v0.35.0 h1:Mv2mzuHuZuY2+bkyWXIHMfhNdJAdwW3FuWeCPYN5GVQ=
|
|
|
|
|
golang.org/x/oauth2 v0.35.0/go.mod h1:lzm5WQJQwKZ3nwavOZ3IS5Aulzxi68dUSgRHujetwEA=
|
|
|
|
|
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
|
|
|
|
golang.org/x/sync v0.0.0-20181108010431-42b317875d0f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
|
|
|
|
golang.org/x/sync v0.0.0-20181221193216-37e7f081c4d4/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
|
|
|
|
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
|
|
|
|
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
|
|
|
|
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
|
|
|
|
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/sync v0.19.0 h1:vV+1eWNmZ5geRlYjzm2adRgW2/mcpevXNg50YZtPCE4=
|
|
|
|
|
golang.org/x/sync v0.19.0/go.mod h1:9KTHXmSnoGruLpwFjVSX0lNNA75CykiMECbovNTZqGI=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
|
|
|
|
golang.org/x/sys v0.0.0-20191026070338-33540a1f6037/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/sys v0.0.0-20200323222414-85ca7c5b95cd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/sys v0.0.0-20200810151505-1b9f1253b3ed/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/sys v0.0.0-20200930185726-fdedc70b468f/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
|
|
|
|
golang.org/x/sys v0.0.0-20210124154548-22da62e12c0c/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
|
|
|
|
golang.org/x/sys v0.0.0-20210228012217-479acdf4ea46/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/sys v0.0.0-20210304124612-50617c2ba197/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
|
|
|
|
golang.org/x/sys v0.0.0-20210330210617-4fbd30eecc44/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/sys v0.0.0-20210615035016-665e8c7367d1/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
|
|
|
|
golang.org/x/sys v0.0.0-20210809222454-d867a43fc93e/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/sys v0.0.0-20220715151400-c0bba94af5f8/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
|
|
|
|
golang.org/x/sys v0.1.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
|
|
|
|
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
|
|
|
|
golang.org/x/sys v0.40.0 h1:DBZZqJ2Rkml6QMQsZywtnjnnGvHza6BTfYFWY9kjEWQ=
|
|
|
|
|
golang.org/x/sys v0.40.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/sys v0.41.0 h1:Ivj+2Cp/ylzLiEU89QhWblYnOE9zerudt9Ftecq2C6k=
|
|
|
|
|
golang.org/x/sys v0.41.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/telemetry v0.0.0-20260109210033-bd525da824e2 h1:O1cMQHRfwNpDfDJerqRoE2oD+AFlyid87D40L/OkkJo=
|
|
|
|
|
golang.org/x/telemetry v0.0.0-20260109210033-bd525da824e2/go.mod h1:b7fPSJ0pKZ3ccUh8gnTONJxhn3c/PS6tyzQvyqw4iA8=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/telemetry v0.0.0-20260213145524-e0ab670178e1 h1:QNaHp8YvpPswfDNxlCmJyeesxbGOgaKf41iT9/QrErY=
|
|
|
|
|
golang.org/x/telemetry v0.0.0-20260213145524-e0ab670178e1/go.mod h1:NuITXsA9cTiqnXtVk+/wrBT2Ja4X5hsfGOYRJ6kgYjs=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/term v0.0.0-20201117132131-f5c789dd3221/go.mod h1:Nr5EML6q2oocZ2LXRh80K7BxOlk5/8JxuGnuhpl+muw=
|
|
|
|
|
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/term v0.39.0 h1:RclSuaJf32jOqZz74CkPA9qFuVTX7vhLlpfj/IGWlqY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/term v0.39.0/go.mod h1:yxzUCTP/U+FzoxfdKmLaA0RV1WgE0VY7hXBwKtY/4ww=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/term v0.40.0 h1:36e4zGLqU4yhjlmxEaagx2KuYbJq3EwY8K943ZsHcvg=
|
|
|
|
|
golang.org/x/term v0.40.0/go.mod h1:w2P8uVp06p2iyKKuvXIm7N/y0UCRt3UfJTfZ7oOpglM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
|
|
|
|
golang.org/x/text v0.3.2/go.mod h1:bEr9sfX3Q8Zfm5fL9x+3itogRgK3+ptLWKqgva+5dAk=
|
|
|
|
|
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/text v0.33.0 h1:B3njUFyqtHDUI5jMn1YIr5B0IE2U0qck04r6d4KPAxE=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/text v0.33.0/go.mod h1:LuMebE6+rBincTi9+xWTY8TztLzKHc/9C1uBCG27+q8=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/text v0.34.0 h1:oL/Qq0Kdaqxa1KbNeMKwQq0reLCCaFtqu2eNuSeNHbk=
|
|
|
|
|
golang.org/x/text v0.34.0/go.mod h1:homfLqTYRFyVYemLBFl5GgL/DWEiH5wcsQ5gSh1yziA=
|
|
|
|
|
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
|
|
|
|
golang.org/x/tools v0.0.0-20190206041539-40960b6deb8e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
|
|
|
|
golang.org/x/tools v0.0.0-20190226205152-f727befe758c/go.mod h1:9Yl7xja0Znq3iFh3HoIrodX9oNMXvdceNzlUR8zjMvY=
|
|
|
|
|
golang.org/x/tools v0.0.0-20190311212946-11955173bddd/go.mod h1:LCzVGOaR6xXOjkQ3onu1FJEFr0SW1gC7cKk1uF8kGRs=
|
|
|
|
|
golang.org/x/tools v0.0.0-20190524140312-2c0ae7006135/go.mod h1:RgjU9mgBXZiqYHBnxXauZ1Gv1EHHAz9KjViQ78xBX0Q=
|
|
|
|
|
golang.org/x/tools v0.0.0-20190927191325-030b2cf1153e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
|
|
|
|
|
golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
|
|
|
|
|
golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapKDTa4BR/hXlZSLoq2Wpct/0txZ28=
|
|
|
|
|
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
|
|
|
|
|
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
|
|
|
|
|
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/tools v0.41.0 h1:a9b8iMweWG+S0OBnlU36rzLp20z1Rp10w+IY2czHTQc=
|
|
|
|
|
golang.org/x/tools v0.41.0/go.mod h1:XSY6eDqxVNiYgezAVqqCeihT4j1U2CCsqvH3WhQpnlg=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/tools v0.42.0 h1:uNgphsn75Tdz5Ji2q36v/nsFSfR/9BRFvqhGBaJGd5k=
|
|
|
|
|
golang.org/x/tools v0.42.0/go.mod h1:Ma6lCIwGZvHK6XtgbswSoWroEkhugApmsXyrUmBhfr0=
|
|
|
|
|
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
|
|
|
|
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/xerrors v0.0.0-20240903120638-7835f813f4da h1:noIWHXmPHxILtqtCOPIhSt0ABwskkZKjD3bXGnZGpNY=
|
|
|
|
|
golang.org/x/xerrors v0.0.0-20240903120638-7835f813f4da/go.mod h1:NDW/Ps6MPRej6fsCIbMTohpP40sJ/P/vI1MoTEGwX90=
|
2026-02-16 13:47:52 +00:00
|
|
|
gonum.org/v1/gonum v0.0.0-20180816165407-929014505bf4/go.mod h1:Y+Yx5eoAFn32cQvJDxZx5Dpnq+c3wtXuadVZAcxbbBo=
|
|
|
|
|
gonum.org/v1/gonum v0.8.2/go.mod h1:oe/vMfY3deqTw+1EZJhuvEW2iwGF1bW9wwu7XCu0+v0=
|
|
|
|
|
gonum.org/v1/gonum v0.9.3/go.mod h1:TZumC3NeyVQskjXqmyWt4S3bINhy7B4eYwW69EbyX+0=
|
|
|
|
|
gonum.org/v1/gonum v0.16.0 h1:5+ul4Swaf3ESvrOnidPp4GZbzf0mxVQpDCYUQE7OJfk=
|
|
|
|
|
gonum.org/v1/gonum v0.16.0/go.mod h1:fef3am4MQ93R2HHpKnLk4/Tbh/s0+wqD5nfa6Pnwy4E=
|
|
|
|
|
gonum.org/v1/gonum v0.17.0 h1:VbpOemQlsSMrYmn7T2OUvQ4dqxQXU+ouZFQsZOx50z4=
|
|
|
|
|
gonum.org/v1/gonum v0.17.0/go.mod h1:El3tOrEuMpv2UdMrbNlKEh9vd86bmQ6vqIcDwxEOc1E=
|
|
|
|
|
gonum.org/v1/netlib v0.0.0-20190313105609-8cb42192e0e0/go.mod h1:wa6Ws7BG/ESfp6dHfk7C6KdzKA7wR7u/rKwOGE66zvw=
|
|
|
|
|
gonum.org/v1/plot v0.0.0-20190515093506-e2840ee46a6b/go.mod h1:Wt8AAjI+ypCyYX3nZBvf6cAIx93T+c/OS2HFAYskSZc=
|
|
|
|
|
gonum.org/v1/plot v0.9.0/go.mod h1:3Pcqqmp6RHvJI72kgb8fThyUnav364FOsdDo2aGW5lY=
|
|
|
|
|
google.golang.org/appengine v1.1.0/go.mod h1:EbEs0AVv82hx2wNQdGPgUI5lhzA/G0D9YwlJXL52JkM=
|
|
|
|
|
google.golang.org/appengine v1.4.0/go.mod h1:xpcJRLb0r/rnEns0DIKYYv+WjYCduHsrkT7/EB5XEv4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
google.golang.org/appengine v1.6.7/go.mod h1:8WjMMxjGQR8xUklV/ARdw2HLXBOI7O7uCIDZVag1xfc=
|
2026-02-16 13:47:52 +00:00
|
|
|
google.golang.org/genproto v0.0.0-20180817151627-c66870c02cf8/go.mod h1:JiN7NxoALGmiZfu7CAH4rXhgtRTLTxftemlI0sWmxmc=
|
|
|
|
|
google.golang.org/genproto v0.0.0-20190819201941-24fa4b261c55/go.mod h1:DMBHOl98Agz4BDEuKkezgsaosCRResVns1a3J2ZsMNc=
|
|
|
|
|
google.golang.org/genproto v0.0.0-20200513103714-09dca8ec2884/go.mod h1:55QSHmfGQM9UVYDPBsyGGes0y52j32PQ3BqQfXhyH3c=
|
|
|
|
|
google.golang.org/genproto v0.0.0-20200526211855-cb27e3aa2013/go.mod h1:NbSheEEYHJ7i3ixzK3sjbqSGDJWnxyFXZblF3eUsNvo=
|
|
|
|
|
google.golang.org/genproto v0.0.0-20210630183607-d20f26d13c79/go.mod h1:yiaVoXHpRzHGyxV3o4DktVWY4mSUErTKaeEOq6C3t3U=
|
|
|
|
|
google.golang.org/genproto/googleapis/rpc v0.0.0-20251111163417-95abcf5c77ba h1:UKgtfRM7Yh93Sya0Fo8ZzhDP4qBckrrxEr2oF5UIVb8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
google.golang.org/genproto/googleapis/rpc v0.0.0-20251111163417-95abcf5c77ba/go.mod h1:7i2o+ce6H/6BluujYR+kqX3GKH+dChPTQU19wjRPiGk=
|
2026-02-16 13:47:52 +00:00
|
|
|
google.golang.org/grpc v1.19.0/go.mod h1:mqu4LbDTu4XGKhr4mRzUsmM4RtVoemTSY81AxZiDr8c=
|
|
|
|
|
google.golang.org/grpc v1.23.0/go.mod h1:Y5yQAOtifL1yxbo5wqy6BxZv8vAUGQwXBOALyacEbxg=
|
|
|
|
|
google.golang.org/grpc v1.25.1/go.mod h1:c3i+UQWmh7LiEpx4sFZnkU36qjEYZ0imhYfXVyQciAY=
|
|
|
|
|
google.golang.org/grpc v1.27.0/go.mod h1:qbnxyOmOxrQa7FizSgH+ReBfzJrCY1pSN7KXBS8abTk=
|
|
|
|
|
google.golang.org/grpc v1.33.1/go.mod h1:fr5YgcSWrqhRRxogOsw7RzIpsmvOZ6IcH4kBYTpR3n0=
|
|
|
|
|
google.golang.org/grpc v1.36.0/go.mod h1:qjiiYl8FncCW8feJPdyg3v6XW24KsRHe+dy9BAGRRjU=
|
|
|
|
|
google.golang.org/grpc v1.38.0/go.mod h1:NREThFqKR1f3iQ6oBuvc5LadQuXVGo9rkm5ZGrQdJfM=
|
|
|
|
|
google.golang.org/grpc v1.39.0/go.mod h1:PImNr+rS9TWYb2O4/emRugxiyHZ5JyHW5F+RPnDzfrE=
|
|
|
|
|
google.golang.org/grpc v1.76.0 h1:UnVkv1+uMLYXoIz6o7chp59WfQUYA2ex/BXQ9rHZu7A=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
google.golang.org/grpc v1.76.0/go.mod h1:Ju12QI8M6iQJtbcsV+awF5a4hfJMLi4X0JLo94ULZ6c=
|
2026-02-16 13:47:52 +00:00
|
|
|
google.golang.org/grpc v1.78.0 h1:K1XZG/yGDJnzMdd/uZHAkVqJE+xIDOcmdSFZkBUicNc=
|
|
|
|
|
google.golang.org/grpc v1.78.0/go.mod h1:I47qjTo4OKbMkjA/aOOwxDIiPSBofUtQUI5EfpWvW7U=
|
|
|
|
|
google.golang.org/protobuf v0.0.0-20200109180630-ec00e32a8dfd/go.mod h1:DFci5gLYBciE7Vtevhsrf46CRTquxDuWsQurQQe4oz8=
|
|
|
|
|
google.golang.org/protobuf v0.0.0-20200221191635-4d8936d0db64/go.mod h1:kwYJMbMJ01Woi6D6+Kah6886xMZcty6N08ah7+eCXa0=
|
|
|
|
|
google.golang.org/protobuf v0.0.0-20200228230310-ab0ca4ff8a60/go.mod h1:cfTl7dwQJ+fmap5saPgwCLgHXTUD7jkjRqWcaiX5VyM=
|
|
|
|
|
google.golang.org/protobuf v1.20.1-0.20200309200217-e05f789c0967/go.mod h1:A+miEFZTKqfCUM6K7xSMQL9OKL/b6hQv+e19PK+JZNE=
|
|
|
|
|
google.golang.org/protobuf v1.21.0/go.mod h1:47Nbq4nVaFHyn7ilMalzfO3qCViNmqZ2kzikPIcrTAo=
|
|
|
|
|
google.golang.org/protobuf v1.22.0/go.mod h1:EGpADcykh3NcUnDUJcl1+ZksZNG86OlYog2l/sGQquU=
|
|
|
|
|
google.golang.org/protobuf v1.23.0/go.mod h1:EGpADcykh3NcUnDUJcl1+ZksZNG86OlYog2l/sGQquU=
|
|
|
|
|
google.golang.org/protobuf v1.23.1-0.20200526195155-81db48ad09cc/go.mod h1:EGpADcykh3NcUnDUJcl1+ZksZNG86OlYog2l/sGQquU=
|
|
|
|
|
google.golang.org/protobuf v1.25.0/go.mod h1:9JNX74DMeImyA3h4bdi1ymwjUzf21/xIlbajtzgsN7c=
|
|
|
|
|
google.golang.org/protobuf v1.26.0-rc.1/go.mod h1:jlhhOSvTdKEhbULTjvd4ARK9grFBp09yW+WbY/TyQbw=
|
|
|
|
|
google.golang.org/protobuf v1.26.0/go.mod h1:9q0QmTI4eRPtz6boOQmLYwt+qCgq0jsYwAQnmE0givc=
|
|
|
|
|
google.golang.org/protobuf v1.27.1/go.mod h1:9q0QmTI4eRPtz6boOQmLYwt+qCgq0jsYwAQnmE0givc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
google.golang.org/protobuf v1.36.10 h1:AYd7cD/uASjIL6Q9LiTjz8JLcrh/88q5UObnmY3aOOE=
|
|
|
|
|
google.golang.org/protobuf v1.36.10/go.mod h1:HTf+CrKn2C3g5S8VImy6tdcUvCska2kB7j23XfzDpco=
|
2026-02-16 13:47:52 +00:00
|
|
|
google.golang.org/protobuf v1.36.11 h1:fV6ZwhNocDyBLK0dj+fg8ektcVegBBuEolpbTQyBNVE=
|
|
|
|
|
google.golang.org/protobuf v1.36.11/go.mod h1:HTf+CrKn2C3g5S8VImy6tdcUvCska2kB7j23XfzDpco=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
|
|
|
|
|
gopkg.in/check.v1 v1.0.0-20190902080502-41f04d3bba15/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
|
2026-02-16 13:47:52 +00:00
|
|
|
gopkg.in/check.v1 v1.0.0-20201130134442-10cb98267c6c h1:Hei/4ADfdWqJk1ZMxUNpqntNwaWcugrBjAiHlqqRiVk=
|
|
|
|
|
gopkg.in/check.v1 v1.0.0-20201130134442-10cb98267c6c/go.mod h1:JHkPIbrfpd72SG/EVd6muEfDQjcINNoR0C8j2r3qZ4Q=
|
|
|
|
|
gopkg.in/warnings.v0 v0.1.2 h1:wFXVbFY8DY5/xOe1ECiWdKCzZlxgshcYVNkBHstARME=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
gopkg.in/warnings.v0 v0.1.2/go.mod h1:jksf8JmL6Qr/oQM2OXTHunEvvTAsrWBLb6OOjuVWRNI=
|
|
|
|
|
gopkg.in/yaml.v2 v2.2.2/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
|
2026-02-16 13:47:52 +00:00
|
|
|
gopkg.in/yaml.v2 v2.2.3/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
gopkg.in/yaml.v2 v2.4.0/go.mod h1:RDklbk79AGWmwhnvt/jBztapEOGDOx6ZbXqjP6csGnQ=
|
|
|
|
|
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
|
2026-02-16 13:47:52 +00:00
|
|
|
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
|
2026-02-16 13:47:52 +00:00
|
|
|
gorgonia.org/vecf32 v0.9.0 h1:PClazic1r+JVJ1dEzRXgeiVl4g1/Hf/w+wUSqnco1Xg=
|
|
|
|
|
gorgonia.org/vecf32 v0.9.0/go.mod h1:NCc+5D2oxddRL11hd+pCB1PEyXWOyiQxfZ/1wwhOXCA=
|
|
|
|
|
gorgonia.org/vecf64 v0.9.0 h1:bgZDP5x0OzBF64PjMGC3EvTdOoMEcmfAh1VCUnZFm1A=
|
|
|
|
|
gorgonia.org/vecf64 v0.9.0/go.mod h1:hp7IOWCnRiVQKON73kkC/AUMtEXyf9kGlVrtPQ9ccVA=
|
|
|
|
|
honnef.co/go/tools v0.0.0-20190102054323-c2f93a96b099/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4=
|
|
|
|
|
honnef.co/go/tools v0.0.0-20190523083050-ea95bdfd59fc/go.mod h1:rf3lG4BRIbNafJWhAfAdb/ePZxsR/4RtNHQocxwk9r4=
|
|
|
|
|
modernc.org/cc/v4 v4.27.1 h1:9W30zRlYrefrDV2JE2O8VDtJ1yPGownxciz5rrbQZis=
|
|
|
|
|
modernc.org/cc/v4 v4.27.1/go.mod h1:uVtb5OGqUKpoLWhqwNQo/8LwvoiEBLvZXIQ/SmO6mL0=
|
|
|
|
|
modernc.org/ccgo/v4 v4.30.1 h1:4r4U1J6Fhj98NKfSjnPUN7Ze2c6MnAdL0hWw6+LrJpc=
|
|
|
|
|
modernc.org/ccgo/v4 v4.30.1/go.mod h1:bIOeI1JL54Utlxn+LwrFyjCx2n2RDiYEaJVSrgdrRfM=
|
|
|
|
|
modernc.org/fileutil v1.3.40 h1:ZGMswMNc9JOCrcrakF1HrvmergNLAmxOPjizirpfqBA=
|
|
|
|
|
modernc.org/fileutil v1.3.40/go.mod h1:HxmghZSZVAz/LXcMNwZPA/DRrQZEVP9VX0V4LQGQFOc=
|
|
|
|
|
modernc.org/gc/v2 v2.6.5 h1:nyqdV8q46KvTpZlsw66kWqwXRHdjIlJOhG6kxiV/9xI=
|
|
|
|
|
modernc.org/gc/v2 v2.6.5/go.mod h1:YgIahr1ypgfe7chRuJi2gD7DBQiKSLMPgBQe9oIiito=
|
|
|
|
|
modernc.org/gc/v3 v3.1.1 h1:k8T3gkXWY9sEiytKhcgyiZ2L0DTyCQ/nvX+LoCljoRE=
|
|
|
|
|
modernc.org/gc/v3 v3.1.1/go.mod h1:HFK/6AGESC7Ex+EZJhJ2Gni6cTaYpSMmU/cT9RmlfYY=
|
|
|
|
|
modernc.org/goabi0 v0.2.0 h1:HvEowk7LxcPd0eq6mVOAEMai46V+i7Jrj13t4AzuNks=
|
|
|
|
|
modernc.org/goabi0 v0.2.0/go.mod h1:CEFRnnJhKvWT1c1JTI3Avm+tgOWbkOu5oPA8eH8LnMI=
|
|
|
|
|
modernc.org/libc v1.67.6 h1:eVOQvpModVLKOdT+LvBPjdQqfrZq+pC39BygcT+E7OI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
modernc.org/libc v1.67.6/go.mod h1:JAhxUVlolfYDErnwiqaLvUqc8nfb2r6S6slAgZOnaiE=
|
2026-02-16 13:47:52 +00:00
|
|
|
modernc.org/libc v1.67.7 h1:H+gYQw2PyidyxwxQsGTwQw6+6H+xUk+plvOKW7+d3TI=
|
|
|
|
|
modernc.org/libc v1.67.7/go.mod h1:UjCSJFl2sYbJbReVQeVpq/MgzlbmDM4cRHIYFelnaDk=
|
|
|
|
|
modernc.org/mathutil v1.7.1 h1:GCZVGXdaN8gTqB1Mf/usp1Y/hSqgI2vAGGP4jZMCxOU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
modernc.org/mathutil v1.7.1/go.mod h1:4p5IwJITfppl0G4sUEDtCr4DthTaT47/N3aT6MhfgJg=
|
2026-02-16 13:47:52 +00:00
|
|
|
modernc.org/memory v1.11.0 h1:o4QC8aMQzmcwCK3t3Ux/ZHmwFPzE6hf2Y5LbkRs+hbI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
modernc.org/memory v1.11.0/go.mod h1:/JP4VbVC+K5sU2wZi9bHoq2MAkCnrt2r98UGeSK7Mjw=
|
2026-02-16 13:47:52 +00:00
|
|
|
modernc.org/opt v0.1.4 h1:2kNGMRiUjrp4LcaPuLY2PzUfqM/w9N23quVwhKt5Qm8=
|
|
|
|
|
modernc.org/opt v0.1.4/go.mod h1:03fq9lsNfvkYSfxrfUhZCWPk1lm4cq4N+Bh//bEtgns=
|
|
|
|
|
modernc.org/sortutil v1.2.1 h1:+xyoGf15mM3NMlPDnFqrteY07klSFxLElE2PVuWIJ7w=
|
|
|
|
|
modernc.org/sortutil v1.2.1/go.mod h1:7ZI3a3REbai7gzCLcotuw9AC4VZVpYMjDzETGsSMqJE=
|
|
|
|
|
modernc.org/sqlite v1.44.3 h1:+39JvV/HWMcYslAwRxHb8067w+2zowvFOUrOWIy9PjY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
modernc.org/sqlite v1.44.3/go.mod h1:CzbrU2lSB1DKUusvwGz7rqEKIq+NUd8GWuBBZDs9/nA=
|
2026-02-16 13:47:52 +00:00
|
|
|
modernc.org/sqlite v1.45.0 h1:r51cSGzKpbptxnby+EIIz5fop4VuE4qFoVEjNvWoObs=
|
|
|
|
|
modernc.org/sqlite v1.45.0/go.mod h1:CzbrU2lSB1DKUusvwGz7rqEKIq+NUd8GWuBBZDs9/nA=
|
|
|
|
|
modernc.org/strutil v1.2.1 h1:UneZBkQA+DX2Rp35KcM69cSsNES9ly8mQWD71HKlOA0=
|
|
|
|
|
modernc.org/strutil v1.2.1/go.mod h1:EHkiggD70koQxjVdSBM3JKM7k6L0FbGE5eymy9i3B9A=
|
|
|
|
|
modernc.org/token v1.1.0 h1:Xl7Ap9dKaEs5kLoOQeQmPWevfnk/DM5qcLcYlA8ys6Y=
|
|
|
|
|
modernc.org/token v1.1.0/go.mod h1:UGzOrNV1mAFSEB63lOFHIpNRUVMvYTc6yu1SMY/XTDM=
|
|
|
|
|
nullprogram.com/x/optparse v1.0.0/go.mod h1:KdyPE+Igbe0jQUrVfMqDMeJQIJZEuyV7pjYmp6pbG50=
|
|
|
|
|
rsc.io/pdf v0.1.1/go.mod h1:n8OzWcQ6Sp37PL01nO98y4iUCRdTGarVfzxY20ICaU4=
|