feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
aead.dev/minisign v0.2.0/go.mod h1:zdq6LdSd9TbuSxchxwhpA9zEb9YXcVGoE8JakuiGaIQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
aead.dev/minisign v0.3.0 h1:8Xafzy5PEVZqYDNP60yJHARlW1eOQtsKNp/Ph2c0vRA=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
aead.dev/minisign v0.3.0/go.mod h1:NLvG3Uoq3skkRMDuc3YHpWUTMTrSExqm+Ij73W13F6Y=
|
2026-02-16 13:47:52 +00:00
|
|
|
dario.cat/mergo v1.0.2 h1:85+piFYR1tMbRrLcDwR18y4UKJ3aH1Tbzi24VRW1TK8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
dario.cat/mergo v1.0.2/go.mod h1:E/hbnu0NxMFBjpMIE34DRGLWqDy0g5FuKDhCb31ngxA=
|
2026-02-21 19:29:23 +00:00
|
|
|
forge.lthn.ai/core/go v0.0.0-20260221191103-d091fa62023f h1:CcSh/FFY93K5m0vADHLxwxKn2pTIM8HzYX1eGa4WZf4=
|
|
|
|
|
forge.lthn.ai/core/go v0.0.0-20260221191103-d091fa62023f/go.mod h1:WCPJVEZm/6mTcJimHV0uX8ZhnKEF3dN0rQp13ByaSPg=
|
|
|
|
|
forge.lthn.ai/core/go-agentic v0.0.0-20260221191948-ad0cf5c932a3 h1:6H3hjqHY0loJJe9iCofFzw6x5JDIbi6JNSL0oW2TKFE=
|
|
|
|
|
forge.lthn.ai/core/go-agentic v0.0.0-20260221191948-ad0cf5c932a3/go.mod h1:2WCSLupRyAeSpmFWM5+OPG0/wa4KMQCO8gA0hM9cUq8=
|
2026-02-21 19:42:16 +00:00
|
|
|
forge.lthn.ai/core/go-crypt v0.0.0-20260221193816-fde12e1539b2 h1:2eXqQXF+1AyitPJox9Yjewb6w8fO0JHFw7gPqk8WqIM=
|
|
|
|
|
forge.lthn.ai/core/go-crypt v0.0.0-20260221193816-fde12e1539b2/go.mod h1:o4vkJgoT9u+r7DR42LIJHW6L5vMS3Au8gaaCA5Cved0=
|
|
|
|
|
forge.lthn.ai/core/go-devops v0.0.0-20260221193818-400d8a76901e h1:ya3vWejLAb9+66FesDYakBi1lTmbHPA/gex6hgZ4zoo=
|
|
|
|
|
forge.lthn.ai/core/go-devops v0.0.0-20260221193818-400d8a76901e/go.mod h1:FSp7+jfV3QXyPzL1C8XZm6W57vjT8cbWly8vf/bPJEg=
|
|
|
|
|
forge.lthn.ai/core/go-scm v0.0.0-20260221193836-7eb28df79d0b h1:GrL3ApTDLCdbPusNjv6rI9qNjqQ+srX1ilwg8I5M0UA=
|
|
|
|
|
forge.lthn.ai/core/go-scm v0.0.0-20260221193836-7eb28df79d0b/go.mod h1:rCTonaMb6UMkyWd/34jg3zp4UXUl85jcb5vj5K+UG0I=
|
2026-02-21 19:29:23 +00:00
|
|
|
forge.lthn.ai/core/go-store v0.1.1-0.20260220151120-0284110ccadf h1:EDKI+OM0M+l4+VclG5XuUDoYAM8yu8uleFYReeEYwHY=
|
|
|
|
|
forge.lthn.ai/core/go-store v0.1.1-0.20260220151120-0284110ccadf/go.mod h1:FpUlLEX/ebyoxpk96F7ktr0vYvmFtC5Rpi9fi88UVqw=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/Microsoft/go-winio v0.5.2/go.mod h1:WpS1mjBmmwHBEWmogvA2mj8546UReBk4v8QkMxJ6pZY=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/Microsoft/go-winio v0.6.2 h1:F2VQgta7ecxGYO8k3ZZz3RS8fVIXVxONVUPlNERoyfY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/Microsoft/go-winio v0.6.2/go.mod h1:yd8OoFMLzJbo9gZq8j5qaps8bJ9aShtEA8Ipt1oGCvU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/ProtonMail/go-crypto v1.3.0 h1:ILq8+Sf5If5DCpHQp4PbZdS1J7HDFRXz/+xKBiRGFrw=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/ProtonMail/go-crypto v1.3.0/go.mod h1:9whxjD8Rbs29b4XWbB8irEcE8KHMqaR2e7GWU1R+/PE=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/Snider/Borg v0.2.0 h1:iCyDhY4WTXi39+FexRwXbn2YpZ2U9FUXVXDZk9xRCXQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/Snider/Borg v0.2.0/go.mod h1:TqlKnfRo9okioHbgrZPfWjQsztBV0Nfskz4Om1/vdMY=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/anmitsu/go-shlex v0.0.0-20200514113438-38f4b401e2be h1:9AeTilPcZAjCFIImctFaOjnTIavg87rW78vTPkQqLI8=
|
|
|
|
|
github.com/anmitsu/go-shlex v0.0.0-20200514113438-38f4b401e2be/go.mod h1:ySMOLuWl6zY27l47sB3qLNK6tF2fkHG55UZxx8oIVo4=
|
|
|
|
|
github.com/armon/go-socks5 v0.0.0-20160902184237-e75332964ef5 h1:0CwZNZbxp69SHPdPJAN/hZIm0C4OItdklCFmMRWYpio=
|
|
|
|
|
github.com/armon/go-socks5 v0.0.0-20160902184237-e75332964ef5/go.mod h1:wHh0iHkYZB8zMSxRWpUBQtwG5a7fFgvEO+odwuTv2gs=
|
2026-02-21 19:29:23 +00:00
|
|
|
github.com/aymanbagabas/go-osc52/v2 v2.0.1 h1:HwpRHbFMcZLEVr42D4p7XBqjyuxQH5SMiErDT4WkJ2k=
|
|
|
|
|
github.com/aymanbagabas/go-osc52/v2 v2.0.1/go.mod h1:uYgXzlJ7ZpABp8OJ+exZzJJhRNQ2ASbcXHWsFqH8hp8=
|
|
|
|
|
github.com/bsm/ginkgo/v2 v2.12.0 h1:Ny8MWAHyOepLGlLKYmXG4IEkioBysk6GpaRTLC8zwWs=
|
|
|
|
|
github.com/bsm/ginkgo/v2 v2.12.0/go.mod h1:SwYbGRRDovPVboqFv0tPTcG1sN61LM1Z4ARdbAV9g4c=
|
|
|
|
|
github.com/bsm/gomega v1.27.10 h1:yeMWxP2pV2fG3FgAODIY8EiRE3dy0aeFYt4l7wh6yKA=
|
|
|
|
|
github.com/bsm/gomega v1.27.10/go.mod h1:JyEr/xRbxbtgWNi8tIEVPUYZ5Dzef52k01W3YH0H+O0=
|
2026-02-21 01:18:50 +00:00
|
|
|
github.com/cespare/xxhash/v2 v2.3.0 h1:UL815xU9SqsFlibzuggzjXhog7bL6oX9BbNZnL2UFvs=
|
|
|
|
|
github.com/cespare/xxhash/v2 v2.3.0/go.mod h1:VGX0DQ3Q6kWi7AoAeZDth3/j3BFtOZR5XLFGgcrjCOs=
|
2026-02-21 19:29:23 +00:00
|
|
|
github.com/charmbracelet/bubbletea v1.3.10 h1:otUDHWMMzQSB0Pkc87rm691KZ3SWa4KUlvF9nRvCICw=
|
|
|
|
|
github.com/charmbracelet/bubbletea v1.3.10/go.mod h1:ORQfo0fk8U+po9VaNvnV95UPWA1BitP1E0N6xJPlHr4=
|
|
|
|
|
github.com/charmbracelet/colorprofile v0.2.3-0.20250311203215-f60798e515dc h1:4pZI35227imm7yK2bGPcfpFEmuY1gc2YSTShr4iJBfs=
|
|
|
|
|
github.com/charmbracelet/colorprofile v0.2.3-0.20250311203215-f60798e515dc/go.mod h1:X4/0JoqgTIPSFcRA/P6INZzIuyqdFY5rm8tb41s9okk=
|
|
|
|
|
github.com/charmbracelet/lipgloss v1.1.0 h1:vYXsiLHVkK7fp74RkV7b2kq9+zDLoEU4MZoFqR/noCY=
|
|
|
|
|
github.com/charmbracelet/lipgloss v1.1.0/go.mod h1:/6Q8FR2o+kj8rz4Dq0zQc3vYf7X+B0binUUBwA0aL30=
|
|
|
|
|
github.com/charmbracelet/x/ansi v0.10.1 h1:rL3Koar5XvX0pHGfovN03f5cxLbCF2YvLeyz7D2jVDQ=
|
|
|
|
|
github.com/charmbracelet/x/ansi v0.10.1/go.mod h1:3RQDQ6lDnROptfpWuUVIUG64bD2g2BgntdxH0Ya5TeE=
|
|
|
|
|
github.com/charmbracelet/x/cellbuf v0.0.13-0.20250311204145-2c3ea96c31dd h1:vy0GVL4jeHEwG5YOXDmi86oYw2yuYUGqz6a8sLwg0X8=
|
|
|
|
|
github.com/charmbracelet/x/cellbuf v0.0.13-0.20250311204145-2c3ea96c31dd/go.mod h1:xe0nKWGd3eJgtqZRaN9RjMtK7xUYchjzPr7q6kcvCCs=
|
|
|
|
|
github.com/charmbracelet/x/term v0.2.1 h1:AQeHeLZ1OqSXhrAWpYUtZyX1T3zVxfpZuEQMIQaGIAQ=
|
|
|
|
|
github.com/charmbracelet/x/term v0.2.1/go.mod h1:oQ4enTYFV7QN4m0i9mzHrViD7TQKvNEEkHUMCmsxdUg=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/cloudflare/circl v1.6.3 h1:9GPOhQGF9MCYUeXyMYlqTR6a5gTrgR/fBLXvUgtVcg8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/cloudflare/circl v1.6.3/go.mod h1:2eXP6Qfat4O/Yhh8BznvKnJ+uzEoTQ6jVKJRn81BiS4=
|
|
|
|
|
github.com/cpuguy83/go-md2man/v2 v2.0.6/go.mod h1:oOW0eioCTA6cOiMLiUPZOpcVxMig6NIQQ7OS05n1F4g=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/cyphar/filepath-securejoin v0.6.1 h1:5CeZ1jPXEiYt3+Z6zqprSAgSWiggmpVyciv8syjIpVE=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/cyphar/filepath-securejoin v0.6.1/go.mod h1:A8hd4EnAeyujCJRrICiOWqjS1AX0a9kM5XL+NwKoYSc=
|
|
|
|
|
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
|
|
|
|
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/davecgh/go-spew v1.1.2-0.20180830191138-d8f796af33cc h1:U9qPSI2PIWSS1VwoXQT9A3Wy9MM3WgvqSxFWenqJduM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/davecgh/go-spew v1.1.2-0.20180830191138-d8f796af33cc/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
2026-02-21 19:29:23 +00:00
|
|
|
github.com/dgryski/go-rendezvous v0.0.0-20200823014737-9f7001d12a5f h1:lO4WD4F/rVNCu3HqELle0jiPLLBs70cWOduZpkS1E78=
|
|
|
|
|
github.com/dgryski/go-rendezvous v0.0.0-20200823014737-9f7001d12a5f/go.mod h1:cuUVRXasLTGF7a8hSLbxyZXjz+1KgoB3wDUb6vlszIc=
|
|
|
|
|
github.com/dustin/go-humanize v1.0.1 h1:GzkhY7T5VNhEkwH0PVJgjz+fX1rhBrR7pRT3mDkpeCY=
|
|
|
|
|
github.com/dustin/go-humanize v1.0.1/go.mod h1:Mu1zIs6XwVuF/gI1OepvI0qD18qycQx+mFykh5fBlto=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/elazarl/goproxy v1.7.2 h1:Y2o6urb7Eule09PjlhQRGNsqRfPmYI3KKQLFpCAV3+o=
|
|
|
|
|
github.com/elazarl/goproxy v1.7.2/go.mod h1:82vkLNir0ALaW14Rc399OTTjyNREgmdL2cVoIbS6XaE=
|
|
|
|
|
github.com/emirpasic/gods v1.18.1 h1:FXtiHYKDGKCW2KzwZKx0iC0PQmdlorYgdFG9jPXJ1Bc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/emirpasic/gods v1.18.1/go.mod h1:8tpGGwCnJ5H4r6BWwaV6OrWmMoPhUl5jm/FMNAnJvWQ=
|
2026-02-21 19:29:23 +00:00
|
|
|
github.com/erikgeiser/coninput v0.0.0-20211004153227-1c3628e74d0f h1:Y/CXytFA4m6baUTXGLOoWe4PQhGxaX0KpnayAqC48p4=
|
|
|
|
|
github.com/erikgeiser/coninput v0.0.0-20211004153227-1c3628e74d0f/go.mod h1:vw97MGsxSvLiUE2X8qFplwetxpGLQrlU1Q9AUEIzCaM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/frankban/quicktest v1.14.6 h1:7Xjx+VpznH+oBnejlPUj8oUpdxnVs4f8XU8WnHkI4W8=
|
|
|
|
|
github.com/frankban/quicktest v1.14.6/go.mod h1:4ptaffx2x8+WTWXmUCuVU6aPUX1/Mz7zb5vbUoiM6w0=
|
|
|
|
|
github.com/fsnotify/fsnotify v1.9.0 h1:2Ml+OJNzbYCTzsxtv8vKSFD9PbJjmhYF14k/jKC7S9k=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/fsnotify/fsnotify v1.9.0/go.mod h1:8jBTzvmWwFyi3Pb8djgCCO5IBqzKJ/Jwo8TRcHyHii0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/gliderlabs/ssh v0.3.8 h1:a4YXD1V7xMF9g5nTkdfnja3Sxy1PVDCj1Zg4Wb8vY6c=
|
|
|
|
|
github.com/gliderlabs/ssh v0.3.8/go.mod h1:xYoytBv1sV0aL3CavoDuJIQNURXkkfPA/wxQ1pL1fAU=
|
|
|
|
|
github.com/go-git/gcfg v1.5.1-0.20230307220236-3a3c6141e376 h1:+zs/tPmkDkHx3U66DAb0lQFJrpS6731Oaa12ikc+DiI=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/go-git/gcfg v1.5.1-0.20230307220236-3a3c6141e376/go.mod h1:an3vInlBmSxCcxctByoQdvwPiA7DTK7jaaFDBTtu0ic=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/go-git/go-billy/v5 v5.7.0 h1:83lBUJhGWhYp0ngzCMSgllhUSuoHP1iEWYjsPl9nwqM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/go-git/go-billy/v5 v5.7.0/go.mod h1:/1IUejTKH8xipsAcdfcSAlUlo2J7lkYV8GTKxAT/L3E=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/go-git/go-git-fixtures/v4 v4.3.2-0.20231010084843-55a94097c399 h1:eMje31YglSBqCdIqdhKBW8lokaMrL3uTkpGYlE2OOT4=
|
|
|
|
|
github.com/go-git/go-git-fixtures/v4 v4.3.2-0.20231010084843-55a94097c399/go.mod h1:1OCfN199q1Jm3HZlxleg+Dw/mwps2Wbk9frAWm+4FII=
|
|
|
|
|
github.com/go-git/go-git/v5 v5.16.5 h1:mdkuqblwr57kVfXri5TTH+nMFLNUxIj9Z7F5ykFbw5s=
|
|
|
|
|
github.com/go-git/go-git/v5 v5.16.5/go.mod h1:QOMLpNf1qxuSY4StA/ArOdfFR2TrKEjJiye2kel2m+M=
|
|
|
|
|
github.com/go-viper/mapstructure/v2 v2.5.0 h1:vM5IJoUAy3d7zRSVtIwQgBj7BiWtMPfmPEgAXnvj1Ro=
|
|
|
|
|
github.com/go-viper/mapstructure/v2 v2.5.0/go.mod h1:oJDH3BJKyqBA2TXFhDsKDGDTlndYOZ6rGS0BRZIxGhM=
|
|
|
|
|
github.com/golang/groupcache v0.0.0-20241129210726-2c02b8208cf8 h1:f+oWsMOmNPc8JmEHVZIycC7hBoQxHH9pNKQORJNozsQ=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/golang/groupcache v0.0.0-20241129210726-2c02b8208cf8/go.mod h1:wcDNUvekVysuuOpQKo3191zZyTpiI6se1N1ULghS0sw=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/google/go-cmp v0.7.0 h1:wk8382ETsv4JYUZwIsn6YpYiWiBsYLSJiTsyBybVuN8=
|
|
|
|
|
github.com/google/go-cmp v0.7.0/go.mod h1:pXiqmnSA92OHEEa9HXL2W4E7lf9JzCmGVUdgjX3N/iU=
|
2026-02-21 19:29:23 +00:00
|
|
|
github.com/google/pprof v0.0.0-20250317173921-a4b03ec1a45e h1:ijClszYn+mADRFY17kjQEVQ1XRhq2/JR1M3sGqeJoxs=
|
|
|
|
|
github.com/google/pprof v0.0.0-20250317173921-a4b03ec1a45e/go.mod h1:boTsfXsheKC2y+lKOCMpSfarhxDeIzfZG1jqGcPl3cA=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=
|
|
|
|
|
github.com/google/uuid v1.6.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
|
2026-02-21 01:18:50 +00:00
|
|
|
github.com/hashicorp/golang-lru/v2 v2.0.7 h1:a+bsQ5rvGLjzHuww6tVxozPZFVghXaHOwFs4luLUK2k=
|
|
|
|
|
github.com/hashicorp/golang-lru/v2 v2.0.7/go.mod h1:QeFd9opnmA6QUJc5vARoKUSoFhyfM2/ZepoAG6RGpeM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/inconshreveable/mousetrap v1.1.0 h1:wN+x4NVGpMsO7ErUn/mUI3vEoE6Jt13X2s0bqwp9tc8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/inconshreveable/mousetrap v1.1.0/go.mod h1:vpF70FUmC8bwa3OWnCshd2FqLfsEA9PFc4w1p2J65bw=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/jbenet/go-context v0.0.0-20150711004518-d14ea06fba99 h1:BQSFePA1RWJOlocH6Fxy8MmwDt+yVQYULKfN0RoTN8A=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/jbenet/go-context v0.0.0-20150711004518-d14ea06fba99/go.mod h1:1lJo3i6rXxKeerYnT8Nvf0QmHCRC1n8sfWVwXF2Frvo=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/kevinburke/ssh_config v1.6.0 h1:J1FBfmuVosPHf5GRdltRLhPJtJpTlMdKTBjRgTaQBFY=
|
|
|
|
|
github.com/kevinburke/ssh_config v1.6.0/go.mod h1:q2RIzfka+BXARoNexmF9gkxEX7DmvbW9P4hIVx2Kg4M=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/klauspost/cpuid/v2 v2.3.0 h1:S4CRMLnYUhGeDFDqkGriYKdfoFlDnMtqTiI/sFzhA9Y=
|
|
|
|
|
github.com/klauspost/cpuid/v2 v2.3.0/go.mod h1:hqwkgyIinND0mEev00jJYCxPNVRVXFQeu1XKlok6oO0=
|
|
|
|
|
github.com/kr/pretty v0.1.0/go.mod h1:dAy3ld7l9f0ibDNOQOHHMYYIIbhfbHSm3C4ZsoJORNo=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/kr/pretty v0.3.1 h1:flRD4NNwYAUpkphVc1HcthR4KEIFJ65n8Mw5qdRn3LE=
|
|
|
|
|
github.com/kr/pretty v0.3.1/go.mod h1:hoEshYVHaxMs3cyo3Yncou5ZscifuDolrwPKZanG3xk=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ=
|
|
|
|
|
github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY=
|
|
|
|
|
github.com/kr/text v0.2.0/go.mod h1:eLer722TekiGuMkidMxC/pM04lWEeraHUUmBw8l2grE=
|
2026-02-21 19:29:23 +00:00
|
|
|
github.com/lucasb-eyer/go-colorful v1.2.0 h1:1nnpGOrhyZZuNyfu1QjKiUICQ74+3FNCN69Aj6K7nkY=
|
|
|
|
|
github.com/lucasb-eyer/go-colorful v1.2.0/go.mod h1:R4dSotOR9KMtayYi1e77YzuveK+i7ruzyGqttikkLy0=
|
2026-02-21 01:18:50 +00:00
|
|
|
github.com/mattn/go-isatty v0.0.20 h1:xfD0iDuEKnDkl03q4limB+vH+GxLEtL/jb4xVJSWWEY=
|
|
|
|
|
github.com/mattn/go-isatty v0.0.20/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y=
|
2026-02-21 19:29:23 +00:00
|
|
|
github.com/mattn/go-localereader v0.0.1 h1:ygSAOl7ZXTx4RdPYinUpg6W99U8jWvWi9Ye2JC/oIi4=
|
|
|
|
|
github.com/mattn/go-localereader v0.0.1/go.mod h1:8fBrzywKY7BI3czFoHkuzRoWE9C+EiG4R1k4Cjx5p88=
|
|
|
|
|
github.com/mattn/go-runewidth v0.0.16 h1:E5ScNMtiwvlvB5paMFdw9p4kSQzbXFikJ5SQO6TULQc=
|
|
|
|
|
github.com/mattn/go-runewidth v0.0.16/go.mod h1:Jdepj2loyihRzMpdS35Xk/zdY8IAYHsh153qUoGf23w=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/minio/selfupdate v0.6.0 h1:i76PgT0K5xO9+hjzKcacQtO7+MjJ4JKA8Ak8XQ9DDwU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/minio/selfupdate v0.6.0/go.mod h1:bO02GTIPCMQFTEvE5h4DjYB58bCoZ35XLeBf0buTDdM=
|
2026-02-21 19:29:23 +00:00
|
|
|
github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6 h1:ZK8zHtRHOkbHy6Mmr5D264iyp3TiX5OmNcI5cIARiQI=
|
|
|
|
|
github.com/muesli/ansi v0.0.0-20230316100256-276c6243b2f6/go.mod h1:CJlz5H+gyd6CUWT45Oy4q24RdLyn7Md9Vj2/ldJBSIo=
|
|
|
|
|
github.com/muesli/cancelreader v0.2.2 h1:3I4Kt4BQjOR54NavqnDogx/MIoWBFa0StPA8ELUXHmA=
|
|
|
|
|
github.com/muesli/cancelreader v0.2.2/go.mod h1:3XuTXfFS2VjM+HTLZY9Ak0l6eUKfijIfMUZ4EgX0QYo=
|
|
|
|
|
github.com/muesli/termenv v0.16.0 h1:S5AlUN9dENB57rsbnkPyfdGuWIlkmzJjbFf0Tf5FWUc=
|
|
|
|
|
github.com/muesli/termenv v0.16.0/go.mod h1:ZRfOIKPFDYQoDFF4Olj7/QJbW60Ol/kL1pU3VfY/Cnk=
|
|
|
|
|
github.com/ncruces/go-strftime v1.0.0 h1:HMFp8mLCTPp341M/ZnA4qaf7ZlsbTc+miZjCLOFAw7w=
|
|
|
|
|
github.com/ncruces/go-strftime v1.0.0/go.mod h1:Fwc5htZGVVkseilnfgOVb9mKy6w1naJmn9CehxcKcls=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/onsi/gomega v1.34.1 h1:EUMJIKUjM8sKjYbtxQI9A4z2o+rruxnzNvpknOXie6k=
|
|
|
|
|
github.com/onsi/gomega v1.34.1/go.mod h1:kU1QgUvBDLXBJq618Xvm2LUX6rSAfRaFRTcdOeDLwwY=
|
|
|
|
|
github.com/pelletier/go-toml/v2 v2.2.4 h1:mye9XuhQ6gvn5h28+VilKrrPoQVanw5PMw/TB0t5Ec4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/pelletier/go-toml/v2 v2.2.4/go.mod h1:2gIqNv+qfxSVS7cM2xJQKtLSTLUE9V8t9Stt+h56mCY=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/pjbgf/sha1cd v0.5.0 h1:a+UkboSi1znleCDUNT3M5YxjOnN1fz2FhN48FlwCxs0=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/pjbgf/sha1cd v0.5.0/go.mod h1:lhpGlyHLpQZoxMv8HcgXvZEhcGs0PG/vsZnEJ7H0iCM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
|
|
|
|
|
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/pmezard/go-difflib v1.0.1-0.20181226105442-5d4384ee4fb2 h1:Jamvg5psRIccs7FGNTlIRMkT8wgtp5eCXdBlqhYGL6U=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/pmezard/go-difflib v1.0.1-0.20181226105442-5d4384ee4fb2/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
|
2026-02-21 19:29:23 +00:00
|
|
|
github.com/redis/go-redis/v9 v9.18.0 h1:pMkxYPkEbMPwRdenAzUNyFNrDgHx9U+DrBabWNfSRQs=
|
|
|
|
|
github.com/redis/go-redis/v9 v9.18.0/go.mod h1:k3ufPphLU5YXwNTUcCRXGxUoF1fqxnhFQmscfkCoDA0=
|
|
|
|
|
github.com/remyoudompheng/bigfft v0.0.0-20230129092748-24d4a6f8daec h1:W09IVJc94icq4NjY3clb7Lk8O1qJ8BdBEF8z0ibU0rE=
|
|
|
|
|
github.com/remyoudompheng/bigfft v0.0.0-20230129092748-24d4a6f8daec/go.mod h1:qqbHyh8v60DhA7CoWK5oRCqLrMHRGoxYCSS9EjAz6Eo=
|
|
|
|
|
github.com/rivo/uniseg v0.2.0/go.mod h1:J6wj4VEh+S6ZtnVlnTBMWIodfgj8LQOQFoIToxlJtxc=
|
|
|
|
|
github.com/rivo/uniseg v0.4.7 h1:WUdvkW8uEhrYfLC4ZzdpI2ztxP1I582+49Oc5Mq64VQ=
|
|
|
|
|
github.com/rivo/uniseg v0.4.7/go.mod h1:FN3SvrM+Zdj16jyLfmOkMNblXMcoc8DfTHruCPUcx88=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/rogpeppe/go-internal v1.14.1 h1:UQB4HGPB6osV0SQTLymcB4TgvyWu6ZyliaW0tI/otEQ=
|
|
|
|
|
github.com/rogpeppe/go-internal v1.14.1/go.mod h1:MaRKkUm5W0goXpeCfT7UZI6fk/L7L7so1lCWt35ZSgc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/sagikazarmark/locafero v0.12.0 h1:/NQhBAkUb4+fH1jivKHWusDYFjMOOKU88eegjfxfHb4=
|
|
|
|
|
github.com/sagikazarmark/locafero v0.12.0/go.mod h1:sZh36u/YSZ918v0Io+U9ogLYQJ9tLLBmM4eneO6WwsI=
|
|
|
|
|
github.com/sergi/go-diff v1.4.0 h1:n/SP9D5ad1fORl+llWyN+D6qoUETXNZARKjyY2/KVCw=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/sergi/go-diff v1.4.0/go.mod h1:A0bzQcvG0E7Rwjx0REVgAGH58e96+X0MeOfepqsbeW4=
|
|
|
|
|
github.com/sirupsen/logrus v1.7.0/go.mod h1:yWOB1SBYBC5VeMP7gHvWumXLIWorT60ONWic61uBYv0=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/skeema/knownhosts v1.3.2 h1:EDL9mgf4NzwMXCTfaxSD/o/a5fxDw/xL9nkU28JjdBg=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/skeema/knownhosts v1.3.2/go.mod h1:bEg3iQAuw+jyiw+484wwFJoKSLwcfd7fqRy+N0QTiow=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/spf13/afero v1.15.0 h1:b/YBCLWAJdFWJTN9cLhiXXcD7mzKn9Dm86dNnfyQw1I=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/spf13/afero v1.15.0/go.mod h1:NC2ByUVxtQs4b3sIUphxK0NioZnmxgyCrfzeuq8lxMg=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/spf13/cast v1.10.0 h1:h2x0u2shc1QuLHfxi+cTJvs30+ZAHOGRic8uyGTDWxY=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/spf13/cast v1.10.0/go.mod h1:jNfB8QC9IA6ZuY2ZjDp0KtFO2LZZlg4S/7bzP6qqeHo=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/spf13/cobra v1.10.2 h1:DMTTonx5m65Ic0GOoRY2c16WCbHxOOw6xxezuLaBpcU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/spf13/cobra v1.10.2/go.mod h1:7C1pvHqHw5A4vrJfjNwvOdzYu0Gml16OCs2GRiTUUS4=
|
|
|
|
|
github.com/spf13/pflag v1.0.9/go.mod h1:McXfInJRrz4CZXVZOBLb0bTZqETkiAhM9Iw0y3An2Bg=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/spf13/pflag v1.0.10 h1:4EBh2KAYBwaONj6b2Ye1GiHfwjqyROoF4RwYO+vPwFk=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/spf13/pflag v1.0.10/go.mod h1:McXfInJRrz4CZXVZOBLb0bTZqETkiAhM9Iw0y3An2Bg=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/spf13/viper v1.21.0 h1:x5S+0EU27Lbphp4UKm1C+1oQO+rKx36vfCoaVebLFSU=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/spf13/viper v1.21.0/go.mod h1:P0lhsswPGWD/1lZJ9ny3fYnVqxiegrlNrEmgLjbTCAY=
|
|
|
|
|
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
|
|
|
|
|
github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs=
|
|
|
|
|
github.com/stretchr/testify v1.4.0/go.mod h1:j7eGeouHqKxXV5pUuKE4zz7dFj8WfuZ+81PSLYec5m4=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/stretchr/testify v1.11.1 h1:7s2iGBzp5EwR7/aIZr8ao5+dra3wiQyKjjFuvgVKu7U=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/stretchr/testify v1.11.1/go.mod h1:wZwfW3scLgRK+23gO65QZefKpKQRnfz6sD981Nm4B6U=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/subosito/gotenv v1.6.0 h1:9NlTDc1FTs4qu0DDq7AEtTPNw6SVm7uBMsUCUjABIf8=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/subosito/gotenv v1.6.0/go.mod h1:Dk4QP5c2W3ibzajGcXpNraDfq2IrhjMIvMSWPKKo0FU=
|
2026-02-16 13:47:52 +00:00
|
|
|
github.com/xanzy/ssh-agent v0.3.3 h1:+/15pJfg/RsTxqYcX6fHqOXZwwMP+2VyYWJeWM2qQFM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/xanzy/ssh-agent v0.3.3/go.mod h1:6dzNDKs0J9rVPHPhaGCukekBHKqfl+L3KghI1Bc68Uw=
|
2026-02-21 19:29:23 +00:00
|
|
|
github.com/xo/terminfo v0.0.0-20220910002029-abceb7e1c41e h1:JVG44RsyaB9T2KIHavMF/ppJZNG9ZpyihvCd0w101no=
|
|
|
|
|
github.com/xo/terminfo v0.0.0-20220910002029-abceb7e1c41e/go.mod h1:RbqR21r5mrJuqunuUZ/Dhy/avygyECGrLceyNeo4LiM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
github.com/zeebo/xxh3 v1.1.0 h1:s7DLGDK45Dyfg7++yxI0khrfwq9661w9EN78eP/UZVs=
|
|
|
|
|
github.com/zeebo/xxh3 v1.1.0/go.mod h1:IisAie1LELR4xhVinxWS5+zf1lA4p0MW4T+w+W07F5s=
|
2026-02-21 19:29:23 +00:00
|
|
|
go.uber.org/atomic v1.11.0 h1:ZvwS0R+56ePWxUNi+Atn9dWONBPp/AUETXlHW0DxSjE=
|
|
|
|
|
go.uber.org/atomic v1.11.0/go.mod h1:LUxbIzbOniOlMKjJjyPfpl4v+PKK2cNJn91OQbhoJI0=
|
2026-02-16 13:47:52 +00:00
|
|
|
go.yaml.in/yaml/v3 v3.0.4 h1:tfq32ie2Jv2UxXFdLJdh3jXuOzWiL1fo0bu/FbuKpbc=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
go.yaml.in/yaml/v3 v3.0.4/go.mod h1:DhzuOOF2ATzADvBadXxruRBLzYTpT36CKvDb3+aBEFg=
|
|
|
|
|
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
|
|
|
|
|
golang.org/x/crypto v0.0.0-20210220033148-5ea612d1eb83/go.mod h1:jdWPYTVW3xRLrWPugEBEK3UY2ZEsg3UU495nc5E+M+I=
|
|
|
|
|
golang.org/x/crypto v0.0.0-20211209193657-4570a0811e8b/go.mod h1:IxCIyHEi3zRg3s0A5j5BB6A9Jmi73HwBIUl50j+osU4=
|
|
|
|
|
golang.org/x/crypto v0.0.0-20220622213112-05595931fe9d/go.mod h1:IxCIyHEi3zRg3s0A5j5BB6A9Jmi73HwBIUl50j+osU4=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/crypto v0.48.0 h1:/VRzVqiRSggnhY7gNRxPauEQ5Drw9haKdM0jqfcCFts=
|
|
|
|
|
golang.org/x/crypto v0.48.0/go.mod h1:r0kV5h3qnFPlQnBSrULhlsRfryS2pmewsg+XfMgkVos=
|
|
|
|
|
golang.org/x/exp v0.0.0-20260212183809-81e46e3db34a h1:ovFr6Z0MNmU7nH8VaX5xqw+05ST2uO1exVfZPVqRC5o=
|
|
|
|
|
golang.org/x/exp v0.0.0-20260212183809-81e46e3db34a/go.mod h1:K79w1Vqn7PoiZn+TkNpx3BUWUQksGO3JcVX6qIjytmA=
|
|
|
|
|
golang.org/x/mod v0.33.0 h1:tHFzIWbBifEmbwtGz65eaWyGiGZatSrT9prnU8DbVL8=
|
|
|
|
|
golang.org/x/mod v0.33.0/go.mod h1:swjeQEj+6r7fODbD2cqrnje9PnziFuw4bmLbBZFrQ5w=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
|
|
|
|
|
golang.org/x/net v0.0.0-20211112202133-69e39bad7dc2/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/net v0.50.0 h1:ucWh9eiCGyDR3vtzso0WMQinm2Dnt8cFMuQa9K33J60=
|
|
|
|
|
golang.org/x/net v0.50.0/go.mod h1:UgoSli3F/pBgdJBHCTc+tp3gmrU4XswgGRgtnwWTfyM=
|
|
|
|
|
golang.org/x/oauth2 v0.35.0 h1:Mv2mzuHuZuY2+bkyWXIHMfhNdJAdwW3FuWeCPYN5GVQ=
|
|
|
|
|
golang.org/x/oauth2 v0.35.0/go.mod h1:lzm5WQJQwKZ3nwavOZ3IS5Aulzxi68dUSgRHujetwEA=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/sync v0.19.0 h1:vV+1eWNmZ5geRlYjzm2adRgW2/mcpevXNg50YZtPCE4=
|
|
|
|
|
golang.org/x/sync v0.19.0/go.mod h1:9KTHXmSnoGruLpwFjVSX0lNNA75CykiMECbovNTZqGI=
|
|
|
|
|
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
|
|
|
|
golang.org/x/sys v0.0.0-20191026070338-33540a1f6037/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
|
|
|
|
golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
|
|
|
|
golang.org/x/sys v0.0.0-20210124154548-22da62e12c0c/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
|
|
|
|
golang.org/x/sys v0.0.0-20210228012217-479acdf4ea46/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
|
|
|
|
golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
|
|
|
|
golang.org/x/sys v0.0.0-20210615035016-665e8c7367d1/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
2026-02-21 19:29:23 +00:00
|
|
|
golang.org/x/sys v0.0.0-20210809222454-d867a43fc93e/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/sys v0.0.0-20220715151400-c0bba94af5f8/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
2026-02-21 01:18:50 +00:00
|
|
|
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/sys v0.41.0 h1:Ivj+2Cp/ylzLiEU89QhWblYnOE9zerudt9Ftecq2C6k=
|
|
|
|
|
golang.org/x/sys v0.41.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/term v0.0.0-20201117132131-f5c789dd3221/go.mod h1:Nr5EML6q2oocZ2LXRh80K7BxOlk5/8JxuGnuhpl+muw=
|
|
|
|
|
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/term v0.40.0 h1:36e4zGLqU4yhjlmxEaagx2KuYbJq3EwY8K943ZsHcvg=
|
|
|
|
|
golang.org/x/term v0.40.0/go.mod h1:w2P8uVp06p2iyKKuvXIm7N/y0UCRt3UfJTfZ7oOpglM=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
|
|
|
|
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/text v0.34.0 h1:oL/Qq0Kdaqxa1KbNeMKwQq0reLCCaFtqu2eNuSeNHbk=
|
|
|
|
|
golang.org/x/text v0.34.0/go.mod h1:homfLqTYRFyVYemLBFl5GgL/DWEiH5wcsQ5gSh1yziA=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
golang.org/x/tools v0.42.0 h1:uNgphsn75Tdz5Ji2q36v/nsFSfR/9BRFvqhGBaJGd5k=
|
|
|
|
|
golang.org/x/tools v0.42.0/go.mod h1:Ma6lCIwGZvHK6XtgbswSoWroEkhugApmsXyrUmBhfr0=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
|
|
|
|
|
gopkg.in/check.v1 v1.0.0-20190902080502-41f04d3bba15/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
|
2026-02-16 13:47:52 +00:00
|
|
|
gopkg.in/check.v1 v1.0.0-20201130134442-10cb98267c6c h1:Hei/4ADfdWqJk1ZMxUNpqntNwaWcugrBjAiHlqqRiVk=
|
|
|
|
|
gopkg.in/check.v1 v1.0.0-20201130134442-10cb98267c6c/go.mod h1:JHkPIbrfpd72SG/EVd6muEfDQjcINNoR0C8j2r3qZ4Q=
|
|
|
|
|
gopkg.in/warnings.v0 v0.1.2 h1:wFXVbFY8DY5/xOe1ECiWdKCzZlxgshcYVNkBHstARME=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
gopkg.in/warnings.v0 v0.1.2/go.mod h1:jksf8JmL6Qr/oQM2OXTHunEvvTAsrWBLb6OOjuVWRNI=
|
|
|
|
|
gopkg.in/yaml.v2 v2.2.2/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
|
|
|
|
|
gopkg.in/yaml.v2 v2.4.0/go.mod h1:RDklbk79AGWmwhnvt/jBztapEOGDOx6ZbXqjP6csGnQ=
|
2026-02-16 13:47:52 +00:00
|
|
|
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
|
feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)
All 37 ML tests passing. Binary builds at 138MB with all commands.
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 00:34:53 +00:00
|
|
|
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
|
2026-02-21 19:29:23 +00:00
|
|
|
modernc.org/cc/v4 v4.27.1 h1:9W30zRlYrefrDV2JE2O8VDtJ1yPGownxciz5rrbQZis=
|
|
|
|
|
modernc.org/cc/v4 v4.27.1/go.mod h1:uVtb5OGqUKpoLWhqwNQo/8LwvoiEBLvZXIQ/SmO6mL0=
|
|
|
|
|
modernc.org/ccgo/v4 v4.30.1 h1:4r4U1J6Fhj98NKfSjnPUN7Ze2c6MnAdL0hWw6+LrJpc=
|
|
|
|
|
modernc.org/ccgo/v4 v4.30.1/go.mod h1:bIOeI1JL54Utlxn+LwrFyjCx2n2RDiYEaJVSrgdrRfM=
|
|
|
|
|
modernc.org/fileutil v1.3.40 h1:ZGMswMNc9JOCrcrakF1HrvmergNLAmxOPjizirpfqBA=
|
|
|
|
|
modernc.org/fileutil v1.3.40/go.mod h1:HxmghZSZVAz/LXcMNwZPA/DRrQZEVP9VX0V4LQGQFOc=
|
|
|
|
|
modernc.org/gc/v2 v2.6.5 h1:nyqdV8q46KvTpZlsw66kWqwXRHdjIlJOhG6kxiV/9xI=
|
|
|
|
|
modernc.org/gc/v2 v2.6.5/go.mod h1:YgIahr1ypgfe7chRuJi2gD7DBQiKSLMPgBQe9oIiito=
|
|
|
|
|
modernc.org/gc/v3 v3.1.1 h1:k8T3gkXWY9sEiytKhcgyiZ2L0DTyCQ/nvX+LoCljoRE=
|
|
|
|
|
modernc.org/gc/v3 v3.1.1/go.mod h1:HFK/6AGESC7Ex+EZJhJ2Gni6cTaYpSMmU/cT9RmlfYY=
|
|
|
|
|
modernc.org/goabi0 v0.2.0 h1:HvEowk7LxcPd0eq6mVOAEMai46V+i7Jrj13t4AzuNks=
|
|
|
|
|
modernc.org/goabi0 v0.2.0/go.mod h1:CEFRnnJhKvWT1c1JTI3Avm+tgOWbkOu5oPA8eH8LnMI=
|
|
|
|
|
modernc.org/libc v1.67.7 h1:H+gYQw2PyidyxwxQsGTwQw6+6H+xUk+plvOKW7+d3TI=
|
|
|
|
|
modernc.org/libc v1.67.7/go.mod h1:UjCSJFl2sYbJbReVQeVpq/MgzlbmDM4cRHIYFelnaDk=
|
|
|
|
|
modernc.org/mathutil v1.7.1 h1:GCZVGXdaN8gTqB1Mf/usp1Y/hSqgI2vAGGP4jZMCxOU=
|
|
|
|
|
modernc.org/mathutil v1.7.1/go.mod h1:4p5IwJITfppl0G4sUEDtCr4DthTaT47/N3aT6MhfgJg=
|
|
|
|
|
modernc.org/memory v1.11.0 h1:o4QC8aMQzmcwCK3t3Ux/ZHmwFPzE6hf2Y5LbkRs+hbI=
|
|
|
|
|
modernc.org/memory v1.11.0/go.mod h1:/JP4VbVC+K5sU2wZi9bHoq2MAkCnrt2r98UGeSK7Mjw=
|
|
|
|
|
modernc.org/opt v0.1.4 h1:2kNGMRiUjrp4LcaPuLY2PzUfqM/w9N23quVwhKt5Qm8=
|
|
|
|
|
modernc.org/opt v0.1.4/go.mod h1:03fq9lsNfvkYSfxrfUhZCWPk1lm4cq4N+Bh//bEtgns=
|
|
|
|
|
modernc.org/sortutil v1.2.1 h1:+xyoGf15mM3NMlPDnFqrteY07klSFxLElE2PVuWIJ7w=
|
|
|
|
|
modernc.org/sortutil v1.2.1/go.mod h1:7ZI3a3REbai7gzCLcotuw9AC4VZVpYMjDzETGsSMqJE=
|
|
|
|
|
modernc.org/sqlite v1.46.1 h1:eFJ2ShBLIEnUWlLy12raN0Z1plqmFX9Qe3rjQTKt6sU=
|
|
|
|
|
modernc.org/sqlite v1.46.1/go.mod h1:CzbrU2lSB1DKUusvwGz7rqEKIq+NUd8GWuBBZDs9/nA=
|
|
|
|
|
modernc.org/strutil v1.2.1 h1:UneZBkQA+DX2Rp35KcM69cSsNES9ly8mQWD71HKlOA0=
|
|
|
|
|
modernc.org/strutil v1.2.1/go.mod h1:EHkiggD70koQxjVdSBM3JKM7k6L0FbGE5eymy9i3B9A=
|
|
|
|
|
modernc.org/token v1.1.0 h1:Xl7Ap9dKaEs5kLoOQeQmPWevfnk/DM5qcLcYlA8ys6Y=
|
|
|
|
|
modernc.org/token v1.1.0/go.mod h1:UGzOrNV1mAFSEB63lOFHIpNRUVMvYTc6yu1SMY/XTDM=
|