# LEK-1 LoRA Training Data ## Format Training data for MLX LoRA fine-tuning of Gemma 3 12B. Files: - `train.jsonl` — Training pairs (Axioms-signed prompt → response) - `valid.jsonl` — Validation set (10% holdout) - `lora-config.yaml` — MLX LoRA hyperparameters ## Data Generation Pipeline 1. Hypnos (Gemini 3 Pro) generates 200 prompt-response pairs using Axioms kernel 2. Format as JSONL: `{"text": "user\n{prompt}\nmodel\n{response}"}` 3. Split 180/20 train/valid 4. Run MLX LoRA on M3 Ultra ## Training Command (M3 Ultra) ```bash pip install mlx-lm python -m mlx_lm.lora \ --model google/gemma-3-12b \ --train-data train.jsonl \ --valid-data valid.jsonl \ --num-layers 8 \ --batch-size 1 \ --num-iters 500 \ --learning-rate 1e-5 \ --adapter-path ./adapters ``` ## Merge & Test ```bash python -m mlx_lm.fuse \ --model google/gemma-3-12b \ --adapter-path ./adapters \ --save-path ./gemma-3-12b-lek1 # Convert to GGUF for Ollama python -m mlx_lm.convert --model ./gemma-3-12b-lek1 --to-gguf ``` ## License EUPL-1.2 — All training data and derivative weights.