cli/cmd/ml/cmd_ingest.go
Charon c340303314 refactor: flatten commands, extract php/ci to own repos (#2)
## Summary
- Extract PHP/Laravel commands to `core/php` repo (42 files, standalone module)
- Extract CI/release + SDK commands to `core/ci` repo (10 files)
- Remove `internal/variants/` build tag system entirely
- Move all 30 remaining command packages from `internal/cmd/` to top-level `cmd/`
- Rewrite `main.go` with direct imports — no more variant selection
- PHP and CI are now optional via commented import lines in main.go

Co-authored-by: Claude <developers@lethean.io>
Reviewed-on: #2
Co-authored-by: Charon <charon@lthn.ai>
Co-committed-by: Charon <charon@lthn.ai>
2026-02-16 14:45:06 +00:00

54 lines
1.6 KiB
Go

package ml
import (
"fmt"
"os"
"forge.lthn.ai/core/go/pkg/cli"
"forge.lthn.ai/core/go/pkg/ml"
)
var ingestCmd = &cli.Command{
Use: "ingest",
Short: "Ingest benchmark scores and training logs into InfluxDB",
Long: "Reads content score, capability score, and training log files and writes measurements to InfluxDB for the lab dashboard.",
RunE: runIngest,
}
var (
ingestContent string
ingestCapability string
ingestTraining string
ingestRunID string
ingestBatchSize int
)
func init() {
ingestCmd.Flags().StringVar(&ingestContent, "content", "", "Content scores JSONL file")
ingestCmd.Flags().StringVar(&ingestCapability, "capability", "", "Capability scores JSONL file")
ingestCmd.Flags().StringVar(&ingestTraining, "training-log", "", "MLX LoRA training log file")
ingestCmd.Flags().StringVar(&ingestRunID, "run-id", "", "Run ID tag (defaults to model name)")
ingestCmd.Flags().IntVar(&ingestBatchSize, "batch-size", 100, "Lines per InfluxDB write batch")
}
func runIngest(cmd *cli.Command, args []string) error {
if modelName == "" {
return fmt.Errorf("--model is required")
}
if ingestContent == "" && ingestCapability == "" && ingestTraining == "" {
return fmt.Errorf("at least one of --content, --capability, or --training-log is required")
}
influx := ml.NewInfluxClient(influxURL, influxDB)
cfg := ml.IngestConfig{
ContentFile: ingestContent,
CapabilityFile: ingestCapability,
TrainingLog: ingestTraining,
Model: modelName,
RunID: ingestRunID,
BatchSize: ingestBatchSize,
}
return ml.Ingest(influx, cfg, os.Stdout)
}