cli/cmd/ml/cmd_ml.go
Claude 2eb17db210
feat(ml): add live progress and expand-status commands
Final two Python pipeline gaps ported to Go — InfluxDB live generation
progress and DuckDB expansion pipeline status. Python scripts can now
be archived.

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-17 19:53:07 +00:00

91 lines
3.5 KiB
Go

// Package ml provides ML inference, scoring, and training pipeline commands.
//
// Commands:
// - core ml score: Score responses with heuristic and LLM judges
// - core ml probe: Run capability and content probes against a model
// - core ml export: Export golden set to training JSONL/Parquet
// - core ml expand: Generate expansion responses
// - core ml status: Show training and generation progress
// - core ml gguf: Convert MLX LoRA adapter to GGUF format
// - core ml convert: Convert MLX LoRA adapter to PEFT format
// - core ml agent: Run the scoring agent daemon
// - core ml worker: Run a distributed worker node
// - core ml serve: Start OpenAI-compatible inference server
// - core ml inventory: Show DuckDB table inventory with stats
// - core ml query: Run ad-hoc SQL against DuckDB
// - core ml metrics: Push golden set stats to InfluxDB
// - core ml ingest: Ingest benchmark scores and training logs to InfluxDB
// - core ml normalize: Deduplicate seeds into expansion prompts
// - core ml seed-influx: Migrate golden set from DuckDB to InfluxDB
// - core ml consolidate: Pull and merge response JSONL files from M3
// - core ml import-all: Import all LEM data into DuckDB
// - core ml approve: Filter scored expansions into training JSONL
// - core ml publish: Upload Parquet dataset to HuggingFace Hub
// - core ml coverage: Analyze seed coverage by region and domain
// - core ml live: Show live generation progress from InfluxDB
// - core ml expand-status: Show expansion pipeline progress
package ml
import (
"forge.lthn.ai/core/go/pkg/cli"
)
func init() {
cli.RegisterCommands(AddMLCommands)
}
var mlCmd = &cli.Command{
Use: "ml",
Short: "ML inference, scoring, and training pipeline",
Long: "Commands for ML model scoring, probe evaluation, data export, and format conversion.",
}
// AddMLCommands registers the 'ml' command and all subcommands.
func AddMLCommands(root *cli.Command) {
initFlags()
mlCmd.AddCommand(scoreCmd)
mlCmd.AddCommand(probeCmd)
mlCmd.AddCommand(exportCmd)
mlCmd.AddCommand(expandCmd)
mlCmd.AddCommand(statusCmd)
mlCmd.AddCommand(ggufCmd)
mlCmd.AddCommand(convertCmd)
mlCmd.AddCommand(agentCmd)
mlCmd.AddCommand(workerCmd)
mlCmd.AddCommand(serveCmd)
mlCmd.AddCommand(inventoryCmd)
mlCmd.AddCommand(queryCmd)
mlCmd.AddCommand(metricsCmd)
mlCmd.AddCommand(ingestCmd)
mlCmd.AddCommand(normalizeCmd)
mlCmd.AddCommand(seedInfluxCmd)
mlCmd.AddCommand(consolidateCmd)
mlCmd.AddCommand(importCmd)
mlCmd.AddCommand(approveCmd)
mlCmd.AddCommand(publishCmd)
mlCmd.AddCommand(coverageCmd)
mlCmd.AddCommand(liveCmd)
mlCmd.AddCommand(expandStatusCmd)
root.AddCommand(mlCmd)
}
// Shared persistent flags.
var (
apiURL string
judgeURL string
judgeModel string
influxURL string
influxDB string
dbPath string
modelName string
)
func initFlags() {
mlCmd.PersistentFlags().StringVar(&apiURL, "api-url", "http://10.69.69.108:8090", "OpenAI-compatible API URL")
mlCmd.PersistentFlags().StringVar(&judgeURL, "judge-url", "http://10.69.69.108:11434", "Judge model API URL (Ollama)")
mlCmd.PersistentFlags().StringVar(&judgeModel, "judge-model", "gemma3:27b", "Judge model name")
mlCmd.PersistentFlags().StringVar(&influxURL, "influx", "", "InfluxDB URL (default http://10.69.69.165:8181)")
mlCmd.PersistentFlags().StringVar(&influxDB, "influx-db", "", "InfluxDB database (default training)")
mlCmd.PersistentFlags().StringVar(&dbPath, "db", "", "DuckDB database path (or set LEM_DB env)")
mlCmd.PersistentFlags().StringVar(&modelName, "model", "", "Model name for API")
}