Port LEM scoring/training pipeline into CoreGo as pkg/ml with: - Inference abstraction with HTTP, llama-server, and Ollama backends - 3-tier scoring engine (heuristic, exact, LLM judge) - Capability and content probes for model evaluation - GGUF/safetensors format converters, MLX to PEFT adapter conversion - DuckDB integration for training data pipeline - InfluxDB metrics for lab dashboard - Training data export (JSONL + Parquet) - Expansion generation pipeline with distributed workers - 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker) - 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends) All 37 ML tests passing. Binary builds at 138MB with all commands. Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
81 lines
2 KiB
Go
81 lines
2 KiB
Go
package ml
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"os"
|
|
|
|
"forge.lthn.ai/core/cli/pkg/cli"
|
|
"forge.lthn.ai/core/cli/pkg/ml"
|
|
)
|
|
|
|
var (
|
|
expandWorker string
|
|
expandOutput string
|
|
expandLimit int
|
|
expandDryRun bool
|
|
)
|
|
|
|
var expandCmd = &cli.Command{
|
|
Use: "expand",
|
|
Short: "Generate expansion responses from pending prompts",
|
|
Long: "Reads pending expansion prompts from DuckDB and generates responses via an OpenAI-compatible API.",
|
|
RunE: runExpand,
|
|
}
|
|
|
|
func init() {
|
|
expandCmd.Flags().StringVar(&expandWorker, "worker", "", "Worker hostname (defaults to os.Hostname())")
|
|
expandCmd.Flags().StringVar(&expandOutput, "output", ".", "Output directory for JSONL files")
|
|
expandCmd.Flags().IntVar(&expandLimit, "limit", 0, "Max prompts to process (0 = all)")
|
|
expandCmd.Flags().BoolVar(&expandDryRun, "dry-run", false, "Print plan and exit without generating")
|
|
}
|
|
|
|
func runExpand(cmd *cli.Command, args []string) error {
|
|
if modelName == "" {
|
|
return fmt.Errorf("--model is required")
|
|
}
|
|
|
|
path := dbPath
|
|
if path == "" {
|
|
path = os.Getenv("LEM_DB")
|
|
}
|
|
if path == "" {
|
|
return fmt.Errorf("--db or LEM_DB env is required")
|
|
}
|
|
|
|
if expandWorker == "" {
|
|
h, _ := os.Hostname()
|
|
expandWorker = h
|
|
}
|
|
|
|
db, err := ml.OpenDBReadWrite(path)
|
|
if err != nil {
|
|
return fmt.Errorf("open db: %w", err)
|
|
}
|
|
defer db.Close()
|
|
|
|
rows, err := db.QueryExpansionPrompts("pending", expandLimit)
|
|
if err != nil {
|
|
return fmt.Errorf("query expansion_prompts: %w", err)
|
|
}
|
|
fmt.Printf("Loaded %d pending prompts from %s\n", len(rows), path)
|
|
|
|
var prompts []ml.Response
|
|
for _, r := range rows {
|
|
prompt := r.Prompt
|
|
if prompt == "" && r.PromptEn != "" {
|
|
prompt = r.PromptEn
|
|
}
|
|
prompts = append(prompts, ml.Response{
|
|
ID: r.SeedID,
|
|
Domain: r.Domain,
|
|
Prompt: prompt,
|
|
})
|
|
}
|
|
|
|
ctx := context.Background()
|
|
backend := ml.NewHTTPBackend(apiURL, modelName)
|
|
influx := ml.NewInfluxClient(influxURL, influxDB)
|
|
|
|
return ml.ExpandPrompts(ctx, backend, influx, prompts, modelName, expandWorker, expandOutput, expandDryRun, expandLimit)
|
|
}
|