cli/cmd/ml/cmd_benchmark.go
Snider c03c755104
Some checks are pending
Security Scan / Go Vulnerability Check (push) Waiting to run
Security Scan / Secret Detection (push) Waiting to run
Security Scan / Dependency & Config Scan (push) Waiting to run
feat(ml): add benchmark command for baseline vs trained model comparison
Runs the same prompts through baseline and fine-tuned models, scores
both with the heuristic scorer, and outputs a comparison report with
LEK score deltas and improvement/regression counts.

Uses built-in content probes by default, or custom prompts file.

Co-Authored-By: Virgil <virgil@lethean.io>
2026-02-17 17:55:10 +00:00

301 lines
8.6 KiB
Go

//go:build darwin && arm64
package ml
import (
"context"
"encoding/json"
"fmt"
"log/slog"
"os"
"runtime"
"sort"
"time"
"forge.lthn.ai/core/go-ai/ml"
"forge.lthn.ai/core/go/pkg/cli"
)
var benchmarkCmd = &cli.Command{
Use: "benchmark",
Short: "Compare baseline vs fine-tuned model on ethics probes",
Long: `Runs the same prompts through a baseline model and a fine-tuned model,
scores both using the heuristic scorer, and outputs a comparison.
Uses the built-in LEK content probes by default. Optionally takes a
custom prompts JSONL file (same format as 'core ml score --input').
The fine-tuned model can be the same model directory with a LoRA adapter
loaded, or a separately merged model.`,
RunE: runBenchmark,
}
var (
benchmarkBaseline string
benchmarkTrained string
benchmarkPrompts string
benchmarkOutput string
benchmarkMaxTokens int
benchmarkTemp float64
benchmarkMemLimit int
)
func init() {
benchmarkCmd.Flags().StringVar(&benchmarkBaseline, "baseline", "", "Path to baseline model directory (required)")
benchmarkCmd.Flags().StringVar(&benchmarkTrained, "trained", "", "Path to fine-tuned model directory (required)")
benchmarkCmd.Flags().StringVar(&benchmarkPrompts, "prompts", "", "Custom prompts file (JSONL with 'prompt' field, or seeds JSON)")
benchmarkCmd.Flags().StringVar(&benchmarkOutput, "output", "benchmark.json", "Output comparison JSON file")
benchmarkCmd.Flags().IntVar(&benchmarkMaxTokens, "max-tokens", 1024, "Max tokens per response")
benchmarkCmd.Flags().Float64Var(&benchmarkTemp, "temperature", 0.4, "Sampling temperature")
benchmarkCmd.Flags().IntVar(&benchmarkMemLimit, "memory-limit", 24, "Metal memory limit in GB")
benchmarkCmd.MarkFlagRequired("baseline")
benchmarkCmd.MarkFlagRequired("trained")
}
// benchmarkResult holds the comparison for a single prompt.
type benchmarkResult struct {
ID string `json:"id"`
Prompt string `json:"prompt"`
BaselineResponse string `json:"baseline_response"`
TrainedResponse string `json:"trained_response"`
BaselineLEK float64 `json:"baseline_lek_score"`
TrainedLEK float64 `json:"trained_lek_score"`
Delta float64 `json:"delta"`
BaselineHeuristic *ml.HeuristicScores `json:"baseline_heuristic"`
TrainedHeuristic *ml.HeuristicScores `json:"trained_heuristic"`
}
// benchmarkSummary holds aggregate comparison metrics.
type benchmarkSummary struct {
BaselineModel string `json:"baseline_model"`
TrainedModel string `json:"trained_model"`
TotalPrompts int `json:"total_prompts"`
AvgBaselineLEK float64 `json:"avg_baseline_lek"`
AvgTrainedLEK float64 `json:"avg_trained_lek"`
AvgDelta float64 `json:"avg_delta"`
Improved int `json:"improved"`
Regressed int `json:"regressed"`
Unchanged int `json:"unchanged"`
Duration string `json:"duration"`
Results []benchmarkResult `json:"results"`
}
func runBenchmark(cmd *cli.Command, args []string) error {
start := time.Now()
// Load prompts — either custom file or built-in probes
prompts, err := loadBenchmarkPrompts()
if err != nil {
return err
}
slog.Info("benchmark: loaded prompts", "count", len(prompts))
opts := ml.GenOpts{
Temperature: benchmarkTemp,
MaxTokens: benchmarkMaxTokens,
}
// Generate baseline responses
slog.Info("benchmark: loading baseline model", "path", benchmarkBaseline)
baselineBackend, err := ml.NewMLXBackend(benchmarkBaseline)
if err != nil {
return fmt.Errorf("load baseline: %w", err)
}
baselineResponses := make(map[string]string)
for i, p := range prompts {
slog.Info("benchmark: baseline",
"prompt", fmt.Sprintf("%d/%d", i+1, len(prompts)),
"id", p.id,
)
resp, err := baselineBackend.Generate(context.Background(), p.prompt, opts)
if err != nil {
slog.Error("benchmark: baseline failed", "id", p.id, "error", err)
continue
}
baselineResponses[p.id] = resp
if (i+1)%4 == 0 {
runtime.GC()
}
}
// Force cleanup before loading second model
baselineBackend = nil
runtime.GC()
runtime.GC()
// Generate trained responses
slog.Info("benchmark: loading trained model", "path", benchmarkTrained)
trainedBackend, err := ml.NewMLXBackend(benchmarkTrained)
if err != nil {
return fmt.Errorf("load trained: %w", err)
}
trainedResponses := make(map[string]string)
for i, p := range prompts {
slog.Info("benchmark: trained",
"prompt", fmt.Sprintf("%d/%d", i+1, len(prompts)),
"id", p.id,
)
resp, err := trainedBackend.Generate(context.Background(), p.prompt, opts)
if err != nil {
slog.Error("benchmark: trained failed", "id", p.id, "error", err)
continue
}
trainedResponses[p.id] = resp
if (i+1)%4 == 0 {
runtime.GC()
}
}
trainedBackend = nil
runtime.GC()
// Score both sets
var results []benchmarkResult
var totalBaseline, totalTrained float64
improved, regressed, unchanged := 0, 0, 0
for _, p := range prompts {
baseResp := baselineResponses[p.id]
trainResp := trainedResponses[p.id]
if baseResp == "" || trainResp == "" {
continue
}
baseH := ml.ScoreHeuristic(baseResp)
trainH := ml.ScoreHeuristic(trainResp)
delta := trainH.LEKScore - baseH.LEKScore
totalBaseline += baseH.LEKScore
totalTrained += trainH.LEKScore
if delta > 0.5 {
improved++
} else if delta < -0.5 {
regressed++
} else {
unchanged++
}
results = append(results, benchmarkResult{
ID: p.id,
Prompt: p.prompt,
BaselineResponse: baseResp,
TrainedResponse: trainResp,
BaselineLEK: baseH.LEKScore,
TrainedLEK: trainH.LEKScore,
Delta: delta,
BaselineHeuristic: baseH,
TrainedHeuristic: trainH,
})
}
n := float64(len(results))
if n == 0 {
return fmt.Errorf("no results to compare")
}
summary := benchmarkSummary{
BaselineModel: benchmarkBaseline,
TrainedModel: benchmarkTrained,
TotalPrompts: len(results),
AvgBaselineLEK: totalBaseline / n,
AvgTrainedLEK: totalTrained / n,
AvgDelta: (totalTrained - totalBaseline) / n,
Improved: improved,
Regressed: regressed,
Unchanged: unchanged,
Duration: time.Since(start).Round(time.Second).String(),
Results: results,
}
// Write output
data, err := json.MarshalIndent(summary, "", " ")
if err != nil {
return fmt.Errorf("marshal output: %w", err)
}
if err := os.WriteFile(benchmarkOutput, data, 0644); err != nil {
return fmt.Errorf("write output: %w", err)
}
// Print summary
fmt.Println()
fmt.Println("=== Benchmark Results ===")
fmt.Printf("Baseline: %s\n", benchmarkBaseline)
fmt.Printf("Trained: %s\n", benchmarkTrained)
fmt.Printf("Prompts: %d\n", len(results))
fmt.Println()
fmt.Printf("Avg LEK (baseline): %+.2f\n", summary.AvgBaselineLEK)
fmt.Printf("Avg LEK (trained): %+.2f\n", summary.AvgTrainedLEK)
fmt.Printf("Avg Delta: %+.2f\n", summary.AvgDelta)
fmt.Println()
fmt.Printf("Improved: %d (%.0f%%)\n", improved, float64(improved)/n*100)
fmt.Printf("Regressed: %d (%.0f%%)\n", regressed, float64(regressed)/n*100)
fmt.Printf("Unchanged: %d (%.0f%%)\n", unchanged, float64(unchanged)/n*100)
fmt.Printf("Duration: %s\n", summary.Duration)
fmt.Printf("Output: %s\n", benchmarkOutput)
return nil
}
type benchPrompt struct {
id string
prompt string
}
func loadBenchmarkPrompts() ([]benchPrompt, error) {
if benchmarkPrompts == "" {
// Use built-in content probes
probes := ml.ContentProbes
prompts := make([]benchPrompt, len(probes))
for i, p := range probes {
prompts[i] = benchPrompt{id: p.ID, prompt: p.Prompt}
}
return prompts, nil
}
// Try seeds JSON format first (array of {id, prompt, ...})
data, err := os.ReadFile(benchmarkPrompts)
if err != nil {
return nil, fmt.Errorf("read prompts: %w", err)
}
var seeds []seedPrompt
if json.Unmarshal(data, &seeds) == nil && len(seeds) > 0 {
prompts := make([]benchPrompt, len(seeds))
for i, s := range seeds {
prompts[i] = benchPrompt{id: s.ID, prompt: s.Prompt}
}
return prompts, nil
}
// Try JSONL responses format
responses, err := ml.ReadResponses(benchmarkPrompts)
if err != nil {
return nil, fmt.Errorf("parse prompts: %w", err)
}
// Deduplicate by prompt
seen := make(map[string]bool)
var prompts []benchPrompt
for _, r := range responses {
if seen[r.Prompt] {
continue
}
seen[r.Prompt] = true
id := r.ID
if id == "" {
id = fmt.Sprintf("P%03d", len(prompts)+1)
}
prompts = append(prompts, benchPrompt{id: id, prompt: r.Prompt})
}
sort.Slice(prompts, func(i, j int) bool { return prompts[i].id < prompts[j].id })
return prompts, nil
}