- Fix fmt.Sprintf format verb error in ssh.go (remove unused stat command) - Fix errcheck warnings by explicitly ignoring best-effort operations - Fix ineffassign warning in cmd_ansible.go All golangci-lint checks now pass for deploy packages. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
254 lines
8.3 KiB
Python
254 lines
8.3 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
RAG Ingestion Pipeline for Host UK Documentation
|
|
|
|
Chunks markdown files, generates embeddings via Ollama, stores in Qdrant.
|
|
|
|
Usage:
|
|
python ingest.py /path/to/docs --collection hostuk-docs
|
|
python ingest.py /path/to/flux-ui --collection flux-ui-docs
|
|
|
|
Requirements:
|
|
pip install qdrant-client ollama markdown
|
|
"""
|
|
|
|
import argparse
|
|
import hashlib
|
|
import json
|
|
import os
|
|
import re
|
|
import sys
|
|
from pathlib import Path
|
|
from typing import Generator
|
|
|
|
try:
|
|
from qdrant_client import QdrantClient
|
|
from qdrant_client.models import Distance, VectorParams, PointStruct
|
|
import ollama
|
|
except ImportError:
|
|
print("Install dependencies: pip install qdrant-client ollama")
|
|
sys.exit(1)
|
|
|
|
|
|
# Configuration
|
|
QDRANT_HOST = os.getenv("QDRANT_HOST", "linux.snider.dev")
|
|
QDRANT_PORT = int(os.getenv("QDRANT_PORT", "6333"))
|
|
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL", "nomic-embed-text")
|
|
CHUNK_SIZE = int(os.getenv("CHUNK_SIZE", "500")) # chars
|
|
CHUNK_OVERLAP = int(os.getenv("CHUNK_OVERLAP", "50")) # chars
|
|
VECTOR_DIM = 768 # nomic-embed-text dimension
|
|
|
|
|
|
def chunk_markdown(text: str, chunk_size: int = CHUNK_SIZE, overlap: int = CHUNK_OVERLAP) -> Generator[dict, None, None]:
|
|
"""
|
|
Chunk markdown by sections (## headers), then by paragraphs if too long.
|
|
Preserves context with overlap.
|
|
"""
|
|
# Split by ## headers first
|
|
sections = re.split(r'\n(?=## )', text)
|
|
|
|
for section in sections:
|
|
if not section.strip():
|
|
continue
|
|
|
|
# Extract section title
|
|
lines = section.strip().split('\n')
|
|
title = lines[0].lstrip('#').strip() if lines[0].startswith('#') else ""
|
|
|
|
# If section is small enough, yield as-is
|
|
if len(section) <= chunk_size:
|
|
yield {
|
|
"text": section.strip(),
|
|
"section": title,
|
|
}
|
|
continue
|
|
|
|
# Otherwise, chunk by paragraphs
|
|
paragraphs = re.split(r'\n\n+', section)
|
|
current_chunk = ""
|
|
|
|
for para in paragraphs:
|
|
if len(current_chunk) + len(para) <= chunk_size:
|
|
current_chunk += "\n\n" + para if current_chunk else para
|
|
else:
|
|
if current_chunk:
|
|
yield {
|
|
"text": current_chunk.strip(),
|
|
"section": title,
|
|
}
|
|
# Start new chunk with overlap from previous
|
|
if overlap and current_chunk:
|
|
overlap_text = current_chunk[-overlap:]
|
|
current_chunk = overlap_text + "\n\n" + para
|
|
else:
|
|
current_chunk = para
|
|
|
|
# Don't forget the last chunk
|
|
if current_chunk.strip():
|
|
yield {
|
|
"text": current_chunk.strip(),
|
|
"section": title,
|
|
}
|
|
|
|
|
|
def generate_embedding(text: str) -> list[float]:
|
|
"""Generate embedding using Ollama."""
|
|
response = ollama.embeddings(model=EMBEDDING_MODEL, prompt=text)
|
|
return response["embedding"]
|
|
|
|
|
|
def get_file_category(path: str) -> str:
|
|
"""Determine category from file path."""
|
|
path_lower = path.lower()
|
|
|
|
if "flux" in path_lower or "ui/component" in path_lower:
|
|
return "ui-component"
|
|
elif "brand" in path_lower or "mascot" in path_lower:
|
|
return "brand"
|
|
elif "brief" in path_lower:
|
|
return "product-brief"
|
|
elif "help" in path_lower or "draft" in path_lower:
|
|
return "help-doc"
|
|
elif "task" in path_lower or "plan" in path_lower:
|
|
return "task"
|
|
elif "architecture" in path_lower or "migration" in path_lower:
|
|
return "architecture"
|
|
else:
|
|
return "documentation"
|
|
|
|
|
|
def ingest_directory(do we
|
|
directory: Path,
|
|
client: QdrantClient,
|
|
collection: str,
|
|
verbose: bool = False
|
|
) -> dict:
|
|
"""Ingest all markdown files from directory into Qdrant."""
|
|
|
|
stats = {"files": 0, "chunks": 0, "errors": 0}
|
|
points = []
|
|
|
|
# Find all markdown files
|
|
md_files = list(directory.rglob("*.md"))
|
|
print(f"Found {len(md_files)} markdown files")
|
|
|
|
for file_path in md_files:
|
|
try:
|
|
rel_path = str(file_path.relative_to(directory))
|
|
|
|
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
|
|
content = f.read()
|
|
|
|
if not content.strip():
|
|
continue
|
|
|
|
# Extract metadata
|
|
category = get_file_category(rel_path)
|
|
|
|
# Chunk the content
|
|
for i, chunk in enumerate(chunk_markdown(content)):
|
|
chunk_id = hashlib.md5(
|
|
f"{rel_path}:{i}:{chunk['text'][:100]}".encode()
|
|
).hexdigest()
|
|
|
|
# Generate embedding
|
|
embedding = generate_embedding(chunk["text"])
|
|
|
|
# Create point
|
|
point = PointStruct(
|
|
id=chunk_id,
|
|
vector=embedding,
|
|
payload={
|
|
"text": chunk["text"],
|
|
"source": rel_path,
|
|
"section": chunk["section"],
|
|
"category": category,
|
|
"chunk_index": i,
|
|
}
|
|
)
|
|
points.append(point)
|
|
stats["chunks"] += 1
|
|
|
|
if verbose:
|
|
print(f" [{category}] {rel_path} chunk {i}: {len(chunk['text'])} chars")
|
|
|
|
stats["files"] += 1
|
|
if not verbose:
|
|
print(f" Processed: {rel_path} ({stats['chunks']} chunks total)")
|
|
|
|
except Exception as e:
|
|
print(f" Error processing {file_path}: {e}")
|
|
stats["errors"] += 1
|
|
|
|
# Batch upsert to Qdrant
|
|
if points:
|
|
print(f"\nUpserting {len(points)} vectors to Qdrant...")
|
|
|
|
# Upsert in batches of 100
|
|
batch_size = 100
|
|
for i in range(0, len(points), batch_size):
|
|
batch = points[i:i + batch_size]
|
|
client.upsert(collection_name=collection, points=batch)
|
|
print(f" Uploaded batch {i // batch_size + 1}/{(len(points) - 1) // batch_size + 1}")
|
|
|
|
return stats
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Ingest markdown docs into Qdrant")
|
|
parser.add_argument("directory", type=Path, help="Directory containing markdown files")
|
|
parser.add_argument("--collection", default="hostuk-docs", help="Qdrant collection name")
|
|
parser.add_argument("--recreate", action="store_true", help="Delete and recreate collection")
|
|
parser.add_argument("--verbose", "-v", action="store_true", help="Verbose output")
|
|
parser.add_argument("--qdrant-host", default=QDRANT_HOST, help="Qdrant host")
|
|
parser.add_argument("--qdrant-port", type=int, default=QDRANT_PORT, help="Qdrant port")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if not args.directory.exists():
|
|
print(f"Error: Directory not found: {args.directory}")
|
|
sys.exit(1)
|
|
|
|
# Connect to Qdrant
|
|
print(f"Connecting to Qdrant at {args.qdrant_host}:{args.qdrant_port}...")
|
|
client = QdrantClient(host=args.qdrant_host, port=args.qdrant_port)
|
|
|
|
# Create or recreate collection
|
|
collections = [c.name for c in client.get_collections().collections]
|
|
|
|
if args.recreate and args.collection in collections:
|
|
print(f"Deleting existing collection: {args.collection}")
|
|
client.delete_collection(args.collection)
|
|
collections.remove(args.collection)
|
|
|
|
if args.collection not in collections:
|
|
print(f"Creating collection: {args.collection}")
|
|
client.create_collection(
|
|
collection_name=args.collection,
|
|
vectors_config=VectorParams(size=VECTOR_DIM, distance=Distance.COSINE)
|
|
)
|
|
|
|
# Verify Ollama model is available
|
|
print(f"Using embedding model: {EMBEDDING_MODEL}")
|
|
try:
|
|
ollama.embeddings(model=EMBEDDING_MODEL, prompt="test")
|
|
except Exception as e:
|
|
print(f"Error: Embedding model not available. Run: ollama pull {EMBEDDING_MODEL}")
|
|
sys.exit(1)
|
|
|
|
# Ingest files
|
|
print(f"\nIngesting from: {args.directory}")
|
|
stats = ingest_directory(args.directory, client, args.collection, args.verbose)
|
|
|
|
# Summary
|
|
print(f"\n{'=' * 50}")
|
|
print(f"Ingestion complete!")
|
|
print(f" Files processed: {stats['files']}")
|
|
print(f" Chunks created: {stats['chunks']}")
|
|
print(f" Errors: {stats['errors']}")
|
|
print(f" Collection: {args.collection}")
|
|
print(f"{'=' * 50}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|