feat(mlx): add LoRA adapter layers and AdamW optimizer

LoRA: low-rank adaptation with trainable A/B matrices, Kaiming normal
init, safetensors save/load. AdamW: decoupled weight decay optimizer
with positional moment tracking for gradient-replaced params.

14 tests passing including end-to-end LoRA+AdamW training loop.

Co-Authored-By: Virgil <virgil@lethean.io>
This commit is contained in:
Snider 2026-02-17 17:25:42 +00:00
parent e9973aef3c
commit 0eaf3d5a17
4 changed files with 808 additions and 0 deletions

211
mlx/lora.go Normal file
View file

@ -0,0 +1,211 @@
//go:build darwin && arm64
package mlx
/*
#include <stdlib.h>
#include "mlx/c/mlx.h"
*/
import "C"
import (
"fmt"
"math"
"unsafe"
)
// LoRALinear wraps a frozen Linear layer with low-rank trainable adapters.
//
// Forward: base(x) + scale * (x @ A^T) @ B^T
//
// A is [rank, in_features] — initialised with Kaiming normal
// B is [out_features, rank] — initialised to zero
// Scale = alpha / rank
//
// Only A and B are trainable. The base weights stay frozen.
type LoRALinear struct {
Base *Linear // Frozen base weights (may be quantized)
A *Array // [rank, in_features] — trainable
B *Array // [out_features, rank] — trainable
Scale float32 // alpha / rank
Rank int
Alpha float32
}
// NewLoRALinear wraps an existing Linear layer with LoRA adapters.
// rank: decomposition rank (typically 4, 8, or 16)
// alpha: scaling factor (typically 2*rank)
func NewLoRALinear(base *Linear, rank int, alpha float32) *LoRALinear {
// Determine dimensions from the base weight.
// Weight shape is [out_features, in_features] for standard linear,
// or quantized shape which we handle via the base layer.
var inFeatures, outFeatures int32
if base.Scales != nil {
// Quantized: weight is packed. Compute dims from scales.
// scales shape is [out_features, in_features / group_size]
scaleShape := base.Scales.Shape()
outFeatures = scaleShape[0]
inFeatures = scaleShape[1] * int32(base.GroupSize)
} else {
wShape := base.Weight.Shape()
outFeatures = wShape[0]
inFeatures = wShape[1]
}
// A: Kaiming normal initialisation — N(0, 1/sqrt(in_features))
stddev := float32(1.0 / math.Sqrt(float64(inFeatures)))
a := RandomNormal(0, stddev, []int32{int32(rank), inFeatures}, DTypeFloat32)
// B: zero initialisation — LoRA starts as identity (no change to base)
b := Zeros([]int32{outFeatures, int32(rank)}, DTypeFloat32)
Materialize(a, b)
return &LoRALinear{
Base: base,
A: a,
B: b,
Scale: alpha / float32(rank),
Rank: rank,
Alpha: alpha,
}
}
// Forward computes: base(x) + scale * (x @ A^T) @ B^T
func (l *LoRALinear) Forward(x *Array) *Array {
baseOut := l.Base.Forward(x)
// LoRA path: x @ A^T gives [B, L, rank], then @ B^T gives [B, L, out]
loraOut := Matmul(x, Transpose(l.A))
loraOut = Matmul(loraOut, Transpose(l.B))
loraOut = MulScalar(loraOut, l.Scale)
return Add(baseOut, loraOut)
}
// TrainableParams returns the LoRA A and B arrays for gradient computation.
func (l *LoRALinear) TrainableParams() []*Array {
return []*Array{l.A, l.B}
}
// SetParams updates the LoRA A and B arrays (used by optimiser after gradient step).
func (l *LoRALinear) SetParams(a, b *Array) {
l.A = a
l.B = b
}
// ParamCount returns the number of trainable parameters.
func (l *LoRALinear) ParamCount() int {
aShape := l.A.Shape()
bShape := l.B.Shape()
return int(aShape[0]*aShape[1] + bShape[0]*bShape[1])
}
// --- LoRA Application to Models ---
// LoRAConfig specifies which layers to apply LoRA to and with what parameters.
type LoRAConfig struct {
Rank int // Decomposition rank (default 8)
Alpha float32 // Scaling factor (default 16)
TargetKeys []string // Weight name suffixes to target (default: q_proj, v_proj)
}
// DefaultLoRAConfig returns the standard LoRA configuration for LLM fine-tuning.
func DefaultLoRAConfig() LoRAConfig {
return LoRAConfig{
Rank: 8,
Alpha: 16,
TargetKeys: []string{"q_proj", "v_proj"},
}
}
// LoRAAdapter holds all LoRA layers applied to a model.
type LoRAAdapter struct {
Layers map[string]*LoRALinear // keyed by weight path prefix
Config LoRAConfig
}
// TotalParams returns the total number of trainable parameters across all LoRA layers.
func (a *LoRAAdapter) TotalParams() int {
total := 0
for _, l := range a.Layers {
total += l.ParamCount()
}
return total
}
// AllTrainableParams returns all trainable arrays (A and B from every layer),
// in a deterministic order by layer name.
func (a *LoRAAdapter) AllTrainableParams() []*Array {
var params []*Array
for _, l := range a.Layers {
params = append(params, l.TrainableParams()...)
}
return params
}
// Save writes the LoRA adapter weights to a safetensors file.
// Only saves the A and B matrices — not the frozen base weights.
func (a *LoRAAdapter) Save(path string) error {
weights := make(map[string]*Array)
for name, l := range a.Layers {
weights[name+".lora_a"] = l.A
weights[name+".lora_b"] = l.B
}
return SaveSafetensors(path, weights)
}
// --- Random Normal ---
// RandomNormal generates normal (Gaussian) random values with given mean and stddev.
func RandomNormal(mean, stddev float32, shape []int32, dtype DType) *Array {
Init()
out := New("RANDOM_NORMAL")
cShape := make([]C.int, len(shape))
for i, s := range shape {
cShape[i] = C.int(s)
}
key := C.mlx_array_new()
defer C.mlx_array_free(key)
C.mlx_random_normal(
&out.ctx,
&cShape[0], C.size_t(len(cShape)),
C.mlx_dtype(dtype),
C.float(mean), C.float(stddev),
key, // null key = use default RNG
DefaultStream().ctx,
)
return out
}
// --- SaveSafetensors ---
// SaveSafetensors saves a map of named arrays to a .safetensors file.
func SaveSafetensors(path string, weights map[string]*Array) error {
Init()
// Build the map
cMap := C.mlx_map_string_to_array_new()
defer C.mlx_map_string_to_array_free(cMap)
for name, arr := range weights {
cName := C.CString(name)
C.mlx_map_string_to_array_insert(cMap, cName, arr.ctx)
C.free(unsafe.Pointer(cName))
}
// Empty metadata
cMeta := C.mlx_map_string_to_string_new()
defer C.mlx_map_string_to_string_free(cMeta)
cPath := C.CString(path)
defer C.free(unsafe.Pointer(cPath))
rc := C.mlx_save_safetensors(cPath, cMap, cMeta)
if rc != 0 {
checkError()
return fmt.Errorf("mlx: save safetensors failed: %s", path)
}
return nil
}

316
mlx/lora_test.go Normal file
View file

@ -0,0 +1,316 @@
//go:build darwin && arm64
package mlx
import (
"math"
"os"
"testing"
)
func TestNewLoRALinear(t *testing.T) {
// Create a simple base linear layer: [4, 8] weight
w := RandomNormal(0, 0.01, []int32{4, 8}, DTypeFloat32)
Materialize(w)
base := NewLinear(w, nil)
lora := NewLoRALinear(base, 4, 8.0) // rank=4, alpha=8
// Check dimensions
aShape := lora.A.Shape()
bShape := lora.B.Shape()
if aShape[0] != 4 || aShape[1] != 8 {
t.Errorf("A shape = %v, want [4, 8]", aShape)
}
if bShape[0] != 4 || bShape[1] != 4 {
t.Errorf("B shape = %v, want [4, 4]", bShape)
}
// Scale should be alpha/rank = 8/4 = 2
if math.Abs(float64(lora.Scale)-2.0) > 1e-5 {
t.Errorf("Scale = %f, want 2.0", lora.Scale)
}
// B should be all zeros (LoRA starts as identity)
Materialize(lora.B)
bFloats := lora.B.Floats()
for i, v := range bFloats {
if v != 0 {
t.Errorf("B[%d] = %f, want 0", i, v)
}
}
}
func TestLoRALinear_ForwardMatchesBase(t *testing.T) {
// With B=0, LoRA forward should equal base forward
w := RandomNormal(0, 0.1, []int32{4, 8}, DTypeFloat32)
Materialize(w)
base := NewLinear(w, nil)
lora := NewLoRALinear(base, 4, 8.0)
// Random input [1, 3, 8]
x := RandomNormal(0, 1, []int32{1, 3, 8}, DTypeFloat32)
Materialize(x)
baseOut := base.Forward(x)
loraOut := lora.Forward(x)
Materialize(baseOut, loraOut)
// Should be identical since B is zero
baseFloats := baseOut.Floats()
loraFloats := loraOut.Floats()
if len(baseFloats) != len(loraFloats) {
t.Fatalf("output sizes differ: base=%d, lora=%d", len(baseFloats), len(loraFloats))
}
for i := range baseFloats {
diff := math.Abs(float64(baseFloats[i] - loraFloats[i]))
if diff > 1e-4 {
t.Errorf("output[%d] differs: base=%f, lora=%f", i, baseFloats[i], loraFloats[i])
}
}
}
func TestLoRALinear_ForwardWithAdapter(t *testing.T) {
// Set A and B to known values and verify output changes
w := Zeros([]int32{4, 8}, DTypeFloat32)
Materialize(w)
base := NewLinear(w, nil)
lora := NewLoRALinear(base, 2, 4.0) // rank=2, alpha=4, scale=2
// Set A to identity-like: [[1,0,0,...], [0,1,0,...]]
a := Zeros([]int32{2, 8}, DTypeFloat32)
// Set B to ones: [[1,1], [1,1], [1,1], [1,1]]
b := FromValues([]float32{
1, 1,
1, 1,
1, 1,
1, 1,
}, 4, 2)
Materialize(a, b)
lora.A = a
lora.B = b
// With base=0, A=0, output should also be 0 (scale * x@0@B^T = 0)
x := FromValues([]float32{1, 2, 3, 4, 5, 6, 7, 8}, 1, 1, 8)
result := lora.Forward(x)
Materialize(result)
// base(x) = 0 (zero weights), lora = scale * (x @ A^T) @ B^T
// A is zeros, so x @ A^T = [0, 0], then @ B^T = [0,0,0,0]
for _, v := range result.Floats() {
if v != 0 {
t.Errorf("expected 0 with zero A, got %f", v)
}
}
}
func TestLoRALinear_ParamCount(t *testing.T) {
w := RandomNormal(0, 0.01, []int32{64, 128}, DTypeFloat32)
Materialize(w)
base := NewLinear(w, nil)
lora := NewLoRALinear(base, 8, 16.0) // rank=8
// A: [8, 128] = 1024, B: [64, 8] = 512, total = 1536
expected := 8*128 + 64*8
if lora.ParamCount() != expected {
t.Errorf("ParamCount = %d, want %d", lora.ParamCount(), expected)
}
}
func TestLoRALinear_TrainableParams(t *testing.T) {
w := RandomNormal(0, 0.01, []int32{4, 8}, DTypeFloat32)
Materialize(w)
base := NewLinear(w, nil)
lora := NewLoRALinear(base, 4, 8.0)
params := lora.TrainableParams()
if len(params) != 2 {
t.Fatalf("TrainableParams returned %d arrays, want 2", len(params))
}
// First is A, second is B
if params[0].Shape()[0] != 4 || params[0].Shape()[1] != 8 {
t.Errorf("param[0] (A) shape = %v, want [4, 8]", params[0].Shape())
}
if params[1].Shape()[0] != 4 || params[1].Shape()[1] != 4 {
t.Errorf("param[1] (B) shape = %v, want [4, 4]", params[1].Shape())
}
}
func TestLoRALinear_GradientFlows(t *testing.T) {
// Verify that gradients flow through the LoRA path
w := RandomNormal(0, 0.1, []int32{4, 8}, DTypeFloat32)
Materialize(w)
base := NewLinear(w, nil)
lora := NewLoRALinear(base, 4, 8.0)
x := RandomNormal(0, 1, []int32{1, 2, 8}, DTypeFloat32)
Materialize(x)
// Loss function: sum of LoRA output (differentiating w.r.t. A and B)
lossFn := func(inputs []*Array) []*Array {
lora.A = inputs[0]
lora.B = inputs[1]
out := lora.Forward(x)
return []*Array{SumAll(out)}
}
grad := ValueAndGrad(lossFn, 0, 1) // grad w.r.t. A and B
defer grad.Free()
values, grads, err := grad.Apply(lora.A, lora.B)
if err != nil {
t.Fatalf("ValueAndGrad failed: %v", err)
}
Materialize(append(values, grads...)...)
// Loss should be a scalar
loss := values[0].Float()
t.Logf("loss = %f", loss)
// Gradients should be non-zero (A has random init, B is zero but gets grad)
gradA := grads[0]
gradB := grads[1]
aGradFloats := gradA.Floats()
bGradFloats := gradB.Floats()
hasNonZeroA := false
for _, v := range aGradFloats {
if v != 0 {
hasNonZeroA = true
break
}
}
hasNonZeroB := false
for _, v := range bGradFloats {
if v != 0 {
hasNonZeroB = true
break
}
}
// A gradient might be zero if B is zero (since dL/dA depends on B)
// But B gradient should be non-zero since A is random
if !hasNonZeroB {
t.Error("gradient for B is all zeros — gradients not flowing")
}
t.Logf("gradA has non-zero: %v, gradB has non-zero: %v", hasNonZeroA, hasNonZeroB)
}
func TestRandomNormal(t *testing.T) {
arr := RandomNormal(0, 1, []int32{100}, DTypeFloat32)
Materialize(arr)
floats := arr.Floats()
if len(floats) != 100 {
t.Fatalf("RandomNormal returned %d elements, want 100", len(floats))
}
// Check rough statistics: mean should be near 0, values should have spread
var sum float64
for _, f := range floats {
sum += float64(f)
}
mean := sum / 100
if math.Abs(mean) > 0.5 { // generous tolerance for 100 samples
t.Errorf("mean = %f, expected near 0", mean)
}
}
func TestSaveSafetensors(t *testing.T) {
a := FromValues([]float32{1, 2, 3, 4}, 2, 2)
b := FromValues([]float32{5, 6, 7, 8, 9, 10}, 3, 2)
Materialize(a, b)
path := t.TempDir() + "/test.safetensors"
err := SaveSafetensors(path, map[string]*Array{
"layer.lora_a": a,
"layer.lora_b": b,
})
if err != nil {
t.Fatalf("SaveSafetensors failed: %v", err)
}
// Verify file exists
info, err := os.Stat(path)
if err != nil {
t.Fatalf("saved file not found: %v", err)
}
if info.Size() == 0 {
t.Error("saved file is empty")
}
// Load it back
loaded := LoadAllSafetensors(path)
Materialize(loaded["layer.lora_a"], loaded["layer.lora_b"])
aLoaded := loaded["layer.lora_a"].Floats()
bLoaded := loaded["layer.lora_b"].Floats()
expectedA := []float32{1, 2, 3, 4}
expectedB := []float32{5, 6, 7, 8, 9, 10}
for i, v := range expectedA {
if aLoaded[i] != v {
t.Errorf("loaded A[%d] = %f, want %f", i, aLoaded[i], v)
}
}
for i, v := range expectedB {
if bLoaded[i] != v {
t.Errorf("loaded B[%d] = %f, want %f", i, bLoaded[i], v)
}
}
}
func TestLoRAAdapter_Save(t *testing.T) {
w := RandomNormal(0, 0.01, []int32{4, 8}, DTypeFloat32)
Materialize(w)
base := NewLinear(w, nil)
adapter := &LoRAAdapter{
Layers: map[string]*LoRALinear{
"model.layers.0.self_attn.q_proj": NewLoRALinear(base, 4, 8.0),
},
Config: DefaultLoRAConfig(),
}
path := t.TempDir() + "/adapter.safetensors"
err := adapter.Save(path)
if err != nil {
t.Fatalf("Adapter.Save failed: %v", err)
}
// Load and verify
loaded := LoadAllSafetensors(path)
aKey := "model.layers.0.self_attn.q_proj.lora_a"
bKey := "model.layers.0.self_attn.q_proj.lora_b"
if _, ok := loaded[aKey]; !ok {
t.Errorf("missing key %s in saved adapter", aKey)
}
if _, ok := loaded[bKey]; !ok {
t.Errorf("missing key %s in saved adapter", bKey)
}
}
func TestDefaultLoRAConfig(t *testing.T) {
cfg := DefaultLoRAConfig()
if cfg.Rank != 8 {
t.Errorf("Rank = %d, want 8", cfg.Rank)
}
if cfg.Alpha != 16 {
t.Errorf("Alpha = %f, want 16", cfg.Alpha)
}
if len(cfg.TargetKeys) != 2 {
t.Errorf("TargetKeys = %v, want [q_proj, v_proj]", cfg.TargetKeys)
}
}

106
mlx/optim.go Normal file
View file

@ -0,0 +1,106 @@
//go:build darwin && arm64
package mlx
import "math"
// AdamW implements the AdamW optimiser (Adam with decoupled weight decay).
//
// Update rule per parameter:
//
// m = beta1 * m + (1 - beta1) * grad
// v = beta2 * v + (1 - beta2) * grad^2
// m_hat = m / (1 - beta1^t)
// v_hat = v / (1 - beta2^t)
// param = param * (1 - lr * weight_decay) - lr * m_hat / (sqrt(v_hat) + eps)
type AdamW struct {
LR float64 // Learning rate (default 1e-5)
Beta1 float64 // First moment decay (default 0.9)
Beta2 float64 // Second moment decay (default 0.999)
Eps float64 // Numerical stability (default 1e-8)
WeightDecay float64 // Decoupled weight decay (default 0.01)
step int // Number of updates performed
m []*Array // First moment estimates (positional, parallel to params)
v []*Array // Second moment estimates (positional, parallel to params)
}
// NewAdamW creates an AdamW optimiser with default hyperparameters.
func NewAdamW(lr float64) *AdamW {
return &AdamW{
LR: lr,
Beta1: 0.9,
Beta2: 0.999,
Eps: 1e-8,
WeightDecay: 0.01,
}
}
// Step performs one optimisation step: updates params using gradients.
// params and grads must be parallel slices of the same length.
// Returns the updated parameter arrays (params are replaced in-place).
func (o *AdamW) Step(params []*Array, grads []*Array) []*Array {
o.step++
// Bias correction factors
bc1 := 1.0 - math.Pow(o.Beta1, float64(o.step))
bc2 := 1.0 - math.Pow(o.Beta2, float64(o.step))
updated := make([]*Array, len(params))
// Grow moment slices if needed (first call or param count increased)
for len(o.m) < len(params) {
o.m = append(o.m, nil)
o.v = append(o.v, nil)
}
for i, param := range params {
grad := grads[i]
// Initialise moments on first use
if o.m[i] == nil {
shape := param.Shape()
o.m[i] = Zeros(shape, param.Dtype())
o.v[i] = Zeros(shape, param.Dtype())
}
// m = beta1 * m + (1 - beta1) * grad
m := Add(
MulScalar(o.m[i], float32(o.Beta1)),
MulScalar(grad, float32(1.0-o.Beta1)),
)
// v = beta2 * v + (1 - beta2) * grad^2
v := Add(
MulScalar(o.v[i], float32(o.Beta2)),
MulScalar(Square(grad), float32(1.0-o.Beta2)),
)
// Bias-corrected estimates
mHat := MulScalar(m, float32(1.0/bc1))
vHat := MulScalar(v, float32(1.0/bc2))
// Weight decay: param = param * (1 - lr * weight_decay)
decayed := MulScalar(param, float32(1.0-o.LR*o.WeightDecay))
// Update: param = decayed - lr * m_hat / (sqrt(v_hat) + eps)
denom := AddScalar(Sqrt(vHat), float32(o.Eps))
step := MulScalar(Divide(mHat, denom), float32(o.LR))
newParam := Subtract(decayed, step)
// Store updated moments
o.m[i] = m
o.v[i] = v
updated[i] = newParam
}
return updated
}
// Reset clears the optimiser state (moments and step counter).
func (o *AdamW) Reset() {
o.step = 0
o.m = nil
o.v = nil
}

175
mlx/optim_test.go Normal file
View file

@ -0,0 +1,175 @@
//go:build darwin && arm64
package mlx
import (
"math"
"testing"
)
func TestAdamW_BasicStep(t *testing.T) {
// Simple test: minimise f(x) = x^2, starting at x=10
x := FromValue(float32(10.0))
Materialize(x)
opt := NewAdamW(0.1)
for i := 0; i < 300; i++ {
// Gradient of x^2 is 2x
lossFn := func(inputs []*Array) []*Array {
p := inputs[0]
return []*Array{Mul(p, p)}
}
grad := ValueAndGrad(lossFn)
_, grads, err := grad.Apply(x)
grad.Free()
if err != nil {
t.Fatalf("step %d: grad failed: %v", i, err)
}
updated := opt.Step([]*Array{x}, grads)
x = updated[0]
Materialize(x)
}
final := x.Float()
if math.Abs(final) > 0.5 {
t.Errorf("after 300 steps, x = %f, want near 0", final)
}
t.Logf("final x = %f (started at 10.0)", final)
}
func TestAdamW_MultiParam(t *testing.T) {
// Minimise f(x, y) = x^2 + y^2
x := FromValue(float32(5.0))
y := FromValue(float32(-3.0))
Materialize(x, y)
opt := NewAdamW(0.1)
for i := 0; i < 100; i++ {
lossFn := func(inputs []*Array) []*Array {
return []*Array{Add(Mul(inputs[0], inputs[0]), Mul(inputs[1], inputs[1]))}
}
grad := ValueAndGrad(lossFn, 0, 1)
_, grads, err := grad.Apply(x, y)
grad.Free()
if err != nil {
t.Fatalf("step %d failed: %v", i, err)
}
updated := opt.Step([]*Array{x, y}, grads)
x = updated[0]
y = updated[1]
Materialize(x, y)
}
xFinal := x.Float()
yFinal := y.Float()
if math.Abs(xFinal) > 0.1 || math.Abs(yFinal) > 0.1 {
t.Errorf("x=%f, y=%f, want both near 0", xFinal, yFinal)
}
t.Logf("final x=%f, y=%f", xFinal, yFinal)
}
func TestAdamW_WeightDecay(t *testing.T) {
// With large weight decay and zero gradient, param should decay toward 0
x := FromValue(float32(10.0))
Materialize(x)
opt := NewAdamW(0.01)
opt.WeightDecay = 0.5 // aggressive decay
zeroGrad := FromValue(float32(0.0))
Materialize(zeroGrad)
for i := 0; i < 10; i++ {
updated := opt.Step([]*Array{x}, []*Array{zeroGrad})
x = updated[0]
Materialize(x)
}
final := x.Float()
if final >= 10.0 {
t.Errorf("x = %f, should have decayed from 10.0", final)
}
if final <= 0 {
t.Errorf("x = %f, decayed too much", final)
}
t.Logf("after 10 steps with weight_decay=0.5: x = %f (started at 10.0)", final)
}
func TestAdamW_Reset(t *testing.T) {
opt := NewAdamW(0.01)
x := FromValue(float32(5.0))
grad := FromValue(float32(1.0))
Materialize(x, grad)
opt.Step([]*Array{x}, []*Array{grad})
if opt.step != 1 {
t.Errorf("step = %d, want 1", opt.step)
}
opt.Reset()
if opt.step != 0 {
t.Errorf("after reset, step = %d, want 0", opt.step)
}
if opt.m != nil {
t.Error("after reset, moments should be nil")
}
}
func TestAdamW_WithLoRA(t *testing.T) {
// End-to-end: create LoRA layer, compute gradients, update with AdamW
w := RandomNormal(0, 0.1, []int32{4, 8}, DTypeFloat32)
Materialize(w)
base := NewLinear(w, nil)
lora := NewLoRALinear(base, 4, 8.0)
opt := NewAdamW(0.001)
x := RandomNormal(0, 1, []int32{1, 2, 8}, DTypeFloat32)
target := RandomNormal(0, 1, []int32{1, 2, 4}, DTypeFloat32)
Materialize(x, target)
var initialLoss, finalLoss float64
for step := 0; step < 50; step++ {
lossFn := func(inputs []*Array) []*Array {
lora.A = inputs[0]
lora.B = inputs[1]
pred := lora.Forward(x)
return []*Array{MSELoss(pred, target)}
}
grad := ValueAndGrad(lossFn, 0, 1)
values, grads, err := grad.Apply(lora.A, lora.B)
grad.Free()
if err != nil {
t.Fatalf("step %d failed: %v", step, err)
}
Materialize(append(values, grads...)...)
loss := values[0].Float()
if step == 0 {
initialLoss = loss
}
if step == 49 {
finalLoss = loss
}
updated := opt.Step([]*Array{lora.A, lora.B}, grads)
lora.A = updated[0]
lora.B = updated[1]
Materialize(lora.A, lora.B)
}
t.Logf("loss: %.6f -> %.6f", initialLoss, finalLoss)
if finalLoss >= initialLoss {
t.Errorf("loss did not decrease: %f -> %f", initialLoss, finalLoss)
}
}