go-ai/rag/ollama.go
Athena 3916633f4d test: validate MLX inference and scoring pipeline on M3 Ultra
Fixes #2

- Run complete test suite: all 84 tests passing (100%)
- Verify Metal 4 GPU support and hardware capabilities
- Test scoring pipeline (heuristic + judge + engine)
- Confirm GGUF model directory with 9 models (40.43 GB)
- Document MLX backend build requirements
- Update module imports from forge.lthn.ai/core/go to forge.lthn.ai/core/cli
- Add comprehensive TEST-RESULTS.md with findings

Platform: M3 Ultra (60 GPU cores, 96GB RAM, Metal 4)
Results: All tests passing, scoring pipeline operational, MLX ready to build

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2026-02-16 17:24:36 +00:00

120 lines
2.9 KiB
Go

package rag
import (
"context"
"fmt"
"net/http"
"net/url"
"time"
"forge.lthn.ai/core/cli/pkg/log"
"github.com/ollama/ollama/api"
)
// OllamaConfig holds Ollama connection configuration.
type OllamaConfig struct {
Host string
Port int
Model string
}
// DefaultOllamaConfig returns default Ollama configuration.
// Host defaults to localhost for local development.
func DefaultOllamaConfig() OllamaConfig {
return OllamaConfig{
Host: "localhost",
Port: 11434,
Model: "nomic-embed-text",
}
}
// OllamaClient wraps the Ollama API client for embeddings.
type OllamaClient struct {
client *api.Client
config OllamaConfig
}
// NewOllamaClient creates a new Ollama client.
func NewOllamaClient(cfg OllamaConfig) (*OllamaClient, error) {
baseURL := &url.URL{
Scheme: "http",
Host: fmt.Sprintf("%s:%d", cfg.Host, cfg.Port),
}
client := api.NewClient(baseURL, &http.Client{
Timeout: 30 * time.Second,
})
return &OllamaClient{
client: client,
config: cfg,
}, nil
}
// EmbedDimension returns the embedding dimension for the configured model.
// nomic-embed-text uses 768 dimensions.
func (o *OllamaClient) EmbedDimension() uint64 {
switch o.config.Model {
case "nomic-embed-text":
return 768
case "mxbai-embed-large":
return 1024
case "all-minilm":
return 384
default:
return 768 // Default to nomic-embed-text dimension
}
}
// Embed generates embeddings for the given text.
func (o *OllamaClient) Embed(ctx context.Context, text string) ([]float32, error) {
req := &api.EmbedRequest{
Model: o.config.Model,
Input: text,
}
resp, err := o.client.Embed(ctx, req)
if err != nil {
return nil, log.E("rag.Ollama.Embed", "failed to generate embedding", err)
}
if len(resp.Embeddings) == 0 || len(resp.Embeddings[0]) == 0 {
return nil, log.E("rag.Ollama.Embed", "empty embedding response", nil)
}
// Convert float64 to float32 for Qdrant
embedding := resp.Embeddings[0]
result := make([]float32, len(embedding))
for i, v := range embedding {
result[i] = float32(v)
}
return result, nil
}
// EmbedBatch generates embeddings for multiple texts.
func (o *OllamaClient) EmbedBatch(ctx context.Context, texts []string) ([][]float32, error) {
results := make([][]float32, len(texts))
for i, text := range texts {
embedding, err := o.Embed(ctx, text)
if err != nil {
return nil, log.E("rag.Ollama.EmbedBatch", fmt.Sprintf("failed to embed text %d", i), err)
}
results[i] = embedding
}
return results, nil
}
// VerifyModel checks if the embedding model is available.
func (o *OllamaClient) VerifyModel(ctx context.Context) error {
_, err := o.Embed(ctx, "test")
if err != nil {
return log.E("rag.Ollama.VerifyModel", fmt.Sprintf("model %s not available (run: ollama pull %s)", o.config.Model, o.config.Model), err)
}
return nil
}
// Model returns the configured embedding model name.
func (o *OllamaClient) Model() string {
return o.config.Model
}