go-i18n/reversal/tokeniser.go
Claude f1aa4adbc4
feat(reversal): add Tokeniser with verb matching
Reverse grammar tables into pattern matchers. 3-tier lookup:
JSON grammar data → irregular verb maps → regular morphology rules.
Verified by round-tripping through forward functions.

Export IrregularVerbs() and IrregularNouns() so the reversal engine
reads from the authoritative source instead of a duplicate list.

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 23:15:13 +00:00

303 lines
9.6 KiB
Go

// Package reversal provides reverse grammar lookups.
//
// The forward engine (go-i18n) maps base forms to inflected forms:
//
// PastTense("delete") → "deleted"
// Gerund("run") → "running"
//
// The reversal engine reads those same tables backwards, turning
// inflected forms back into base forms with tense metadata:
//
// MatchVerb("deleted") → {Base: "delete", Tense: "past"}
// MatchVerb("running") → {Base: "run", Tense: "gerund"}
//
// 3-tier lookup: JSON grammar data → irregular verb maps → regular
// morphology rules (verified by round-tripping through forward functions).
package reversal
import (
"strings"
i18n "forge.lthn.ai/core/go-i18n"
)
// VerbMatch holds the result of a reverse verb lookup.
type VerbMatch struct {
Base string // Base form of the verb ("delete", "run")
Tense string // "past", "gerund", or "base"
Form string // The original inflected form
}
// NounMatch holds the result of a reverse noun lookup.
type NounMatch struct {
Base string // Base/singular form of the noun
Plural bool // Whether the matched form was plural
Form string // The original form
}
// Tokeniser provides reverse grammar lookups by maintaining inverse
// indexes built from the forward grammar tables.
type Tokeniser struct {
pastToBase map[string]string // "deleted" → "delete"
gerundToBase map[string]string // "deleting" → "delete"
baseVerbs map[string]bool // "delete" → true
pluralToBase map[string]string // "files" → "file"
baseNouns map[string]bool // "file" → true
words map[string]string // word translations
lang string
}
// NewTokeniser creates a Tokeniser for English ("en").
func NewTokeniser() *Tokeniser {
return NewTokeniserForLang("en")
}
// NewTokeniserForLang creates a Tokeniser for the specified language,
// building inverse indexes from the grammar data.
func NewTokeniserForLang(lang string) *Tokeniser {
t := &Tokeniser{
pastToBase: make(map[string]string),
gerundToBase: make(map[string]string),
baseVerbs: make(map[string]bool),
pluralToBase: make(map[string]string),
baseNouns: make(map[string]bool),
words: make(map[string]string),
lang: lang,
}
t.buildVerbIndex()
return t
}
// buildVerbIndex reads grammar tables and irregular verb maps to build
// inverse lookup maps: inflected form → base form.
func (t *Tokeniser) buildVerbIndex() {
// Tier 1: Read from JSON grammar data (via GetGrammarData).
data := i18n.GetGrammarData(t.lang)
if data != nil && data.Verbs != nil {
for base, forms := range data.Verbs {
t.baseVerbs[base] = true
if forms.Past != "" {
t.pastToBase[forms.Past] = base
}
if forms.Gerund != "" {
t.gerundToBase[forms.Gerund] = base
}
}
}
// Tier 2: Read from the exported irregularVerbs map.
// Build inverse maps directly from the authoritative source.
for base, forms := range i18n.IrregularVerbs() {
t.baseVerbs[base] = true
if forms.Past != "" {
if _, exists := t.pastToBase[forms.Past]; !exists {
t.pastToBase[forms.Past] = base
}
}
if forms.Gerund != "" {
if _, exists := t.gerundToBase[forms.Gerund]; !exists {
t.gerundToBase[forms.Gerund] = base
}
}
}
}
// MatchVerb performs a 3-tier reverse lookup for a verb form.
//
// Tier 1: Check if the word is a known base verb.
// Tier 2: Check the pastToBase and gerundToBase inverse maps.
// Tier 3: Try reverse morphology rules and round-trip verify via
// the forward functions PastTense() and Gerund().
func (t *Tokeniser) MatchVerb(word string) (VerbMatch, bool) {
word = strings.ToLower(strings.TrimSpace(word))
if word == "" {
return VerbMatch{}, false
}
// Tier 1: Is it a base verb?
if t.baseVerbs[word] {
return VerbMatch{Base: word, Tense: "base", Form: word}, true
}
// Tier 2: Check inverse maps from grammar tables + irregular verbs.
if base, ok := t.pastToBase[word]; ok {
return VerbMatch{Base: base, Tense: "past", Form: word}, true
}
if base, ok := t.gerundToBase[word]; ok {
return VerbMatch{Base: base, Tense: "gerund", Form: word}, true
}
// Tier 3: Reverse morphology with round-trip verification.
// Try past tense candidates.
if base := t.bestRoundTrip(word, t.reverseRegularPast(word), i18n.PastTense); base != "" {
return VerbMatch{Base: base, Tense: "past", Form: word}, true
}
// Try gerund candidates.
if base := t.bestRoundTrip(word, t.reverseRegularGerund(word), i18n.Gerund); base != "" {
return VerbMatch{Base: base, Tense: "gerund", Form: word}, true
}
return VerbMatch{}, false
}
// bestRoundTrip selects the best candidate from a list by round-tripping
// each through a forward function. When multiple candidates round-trip
// successfully (ambiguity), it uses the following priority:
// 1. Candidates that are known base verbs (in grammar tables / irregular maps)
// 2. Candidates ending in a VCe pattern (vowel-consonant-e, the "magic e"
// pattern common in real English verbs like "delete", "create", "use").
// This avoids phantom verbs like "walke" or "processe" which have a
// CCe pattern (consonant-consonant-e) that doesn't occur naturally.
// 3. Candidates NOT ending in "e" (the default morphology path)
// 4. First match in candidate order as final tiebreaker
func (t *Tokeniser) bestRoundTrip(target string, candidates []string, forward func(string) string) string {
var matches []string
for _, c := range candidates {
if forward(c) == target {
matches = append(matches, c)
}
}
if len(matches) == 0 {
return ""
}
if len(matches) == 1 {
return matches[0]
}
// Priority 1: known base verb
for _, m := range matches {
if t.baseVerbs[m] {
return m
}
}
// Priority 2: prefer VCe-ending candidate (real English verb pattern)
for _, m := range matches {
if hasVCeEnding(m) {
return m
}
}
// Priority 3: prefer candidate not ending in "e" (avoids phantom verbs
// with CCe endings like "walke", "processe")
for _, m := range matches {
if !strings.HasSuffix(m, "e") {
return m
}
}
return matches[0]
}
// hasVCeEnding returns true if the word ends in a vowel-consonant-e pattern
// (the "magic e" pattern). This is characteristic of real English verbs like
// "delete" (-ete), "create" (-ate), "use" (-use), "close" (-ose).
// Phantom verbs produced by naive suffix stripping like "walke" (-lke) or
// "processe" (-sse) end in consonant-consonant-e and return false.
func hasVCeEnding(word string) bool {
if len(word) < 3 || word[len(word)-1] != 'e' {
return false
}
lastConsonant := word[len(word)-2]
vowelBefore := word[len(word)-3]
return !isVowelByte(lastConsonant) && isVowelByte(vowelBefore)
}
func isVowelByte(b byte) bool {
switch b {
case 'a', 'e', 'i', 'o', 'u':
return true
}
return false
}
// reverseRegularPast generates candidate base forms by reversing regular
// past tense suffixes. Returns multiple candidates ordered by likelihood.
//
// The forward engine applies rules in this order:
// 1. ends in "e" → +d (create → created)
// 2. ends in "y" + consonant → ied (copy → copied)
// 3. shouldDoubleConsonant → double+ed (stop → stopped)
// 4. default → +ed (walk → walked)
//
// We generate candidates for each possible reverse rule. Round-trip
// verification (in bestRoundTrip) ensures only correct candidates pass.
func (t *Tokeniser) reverseRegularPast(word string) []string {
var candidates []string
if !strings.HasSuffix(word, "ed") {
return candidates
}
// Rule: consonant + "ied" → consonant + "y" (e.g., "copied" → "copy")
if strings.HasSuffix(word, "ied") && len(word) > 3 {
base := word[:len(word)-3] + "y"
candidates = append(candidates, base)
}
// Rule: doubled consonant + "ed" → single consonant (e.g., "stopped" → "stop")
if len(word) > 4 {
beforeEd := word[:len(word)-2]
lastChar := beforeEd[len(beforeEd)-1]
if len(beforeEd) >= 2 && beforeEd[len(beforeEd)-2] == lastChar {
base := beforeEd[:len(beforeEd)-1]
candidates = append(candidates, base)
}
}
// Rule: stem + "d" where stem ends in "e" (e.g., "created" → "create")
if len(word) > 2 {
stemPlusE := word[:len(word)-1] // strip "d", leaving stem + "e"
candidates = append(candidates, stemPlusE)
}
// Rule: stem + "ed" (e.g., "walked" → "walk")
if len(word) > 2 {
stem := word[:len(word)-2]
candidates = append(candidates, stem)
}
return candidates
}
// reverseRegularGerund generates candidate base forms by reversing regular
// gerund suffixes. Returns multiple candidates ordered by likelihood.
//
// Rules reversed:
// - verb + "ing" (e.g., "walking" → "walk")
// - verb[:-1] + "ing" (e.g., "creating" → "create", drop e)
// - doubled consonant (e.g., "stopping" → "stop")
// - verb[:-2] + "ying" (e.g., "dying" → "die")
func (t *Tokeniser) reverseRegularGerund(word string) []string {
var candidates []string
if !strings.HasSuffix(word, "ing") || len(word) < 4 {
return candidates
}
stem := word[:len(word)-3] // strip "ing"
// Rule: "ying" → "ie" (e.g., "dying" → "die")
if strings.HasSuffix(word, "ying") && len(word) > 4 {
base := word[:len(word)-4] + "ie"
candidates = append(candidates, base)
}
// Rule: doubled consonant + "ing" → single consonant (e.g., "stopping" → "stop")
if len(stem) >= 2 && stem[len(stem)-1] == stem[len(stem)-2] {
base := stem[:len(stem)-1]
candidates = append(candidates, base)
}
// Rule: direct strip "ing" (e.g., "walking" → "walk")
// This must come before the stem+"e" rule to avoid false positives
// like "walke" round-tripping through Gerund("walke") = "walking".
candidates = append(candidates, stem)
// Rule: stem + "e" was dropped before "ing" (e.g., "creating" → "create")
// Try adding "e" back.
candidates = append(candidates, stem+"e")
return candidates
}