go/internal/cmd/ml/cmd_agent.go
Claude 548256312d feat: add ML inference, scoring, and training pipeline (pkg/ml)
Port LEM scoring/training pipeline into CoreGo as pkg/ml with:
- Inference abstraction with HTTP, llama-server, and Ollama backends
- 3-tier scoring engine (heuristic, exact, LLM judge)
- Capability and content probes for model evaluation
- GGUF/safetensors format converters, MLX to PEFT adapter conversion
- DuckDB integration for training data pipeline
- InfluxDB metrics for lab dashboard
- Training data export (JSONL + Parquet)
- Expansion generation pipeline with distributed workers
- 10 CLI commands under 'core ml' (score, probe, export, expand, status, gguf, convert, agent, worker)
- 5 MCP tools (ml_generate, ml_score, ml_probe, ml_status, ml_backends)

All 37 ML tests passing. Binary builds at 138MB with all commands.

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-16 05:53:52 +00:00

67 lines
2.5 KiB
Go

package ml
import (
"forge.lthn.ai/core/cli/pkg/cli"
"forge.lthn.ai/core/cli/pkg/ml"
)
var (
agentM3Host string
agentM3User string
agentM3SSHKey string
agentM3AdapterBase string
agentBaseModel string
agentPollInterval int
agentWorkDir string
agentFilter string
agentForce bool
agentOneShot bool
agentDryRun bool
)
var agentCmd = &cli.Command{
Use: "agent",
Short: "Run the scoring agent daemon",
Long: "Polls M3 for unscored LoRA checkpoints, converts, probes, and pushes results to InfluxDB.",
RunE: runAgent,
}
func init() {
agentCmd.Flags().StringVar(&agentM3Host, "m3-host", ml.EnvOr("M3_HOST", "10.69.69.108"), "M3 host address")
agentCmd.Flags().StringVar(&agentM3User, "m3-user", ml.EnvOr("M3_USER", "claude"), "M3 SSH user")
agentCmd.Flags().StringVar(&agentM3SSHKey, "m3-ssh-key", ml.EnvOr("M3_SSH_KEY", ml.ExpandHome("~/.ssh/id_ed25519")), "SSH key for M3")
agentCmd.Flags().StringVar(&agentM3AdapterBase, "m3-adapter-base", ml.EnvOr("M3_ADAPTER_BASE", "/Volumes/Data/lem"), "Adapter base dir on M3")
agentCmd.Flags().StringVar(&agentBaseModel, "base-model", ml.EnvOr("BASE_MODEL", "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"), "HuggingFace base model ID")
agentCmd.Flags().IntVar(&agentPollInterval, "poll", ml.IntEnvOr("POLL_INTERVAL", 300), "Poll interval in seconds")
agentCmd.Flags().StringVar(&agentWorkDir, "work-dir", ml.EnvOr("WORK_DIR", "/tmp/scoring-agent"), "Working directory for adapters")
agentCmd.Flags().StringVar(&agentFilter, "filter", "", "Filter adapter dirs by prefix")
agentCmd.Flags().BoolVar(&agentForce, "force", false, "Re-score already-scored checkpoints")
agentCmd.Flags().BoolVar(&agentOneShot, "one-shot", false, "Process one checkpoint and exit")
agentCmd.Flags().BoolVar(&agentDryRun, "dry-run", false, "Discover and plan but don't execute")
}
func runAgent(cmd *cli.Command, args []string) error {
cfg := &ml.AgentConfig{
M3Host: agentM3Host,
M3User: agentM3User,
M3SSHKey: agentM3SSHKey,
M3AdapterBase: agentM3AdapterBase,
InfluxURL: influxURL,
InfluxDB: influxDB,
DBPath: dbPath,
APIURL: apiURL,
JudgeURL: judgeURL,
JudgeModel: judgeModel,
Model: modelName,
BaseModel: agentBaseModel,
PollInterval: agentPollInterval,
WorkDir: agentWorkDir,
Filter: agentFilter,
Force: agentForce,
OneShot: agentOneShot,
DryRun: agentDryRun,
}
ml.RunAgentLoop(cfg)
return nil
}