385 lines
14 KiB
Python
385 lines
14 KiB
Python
|
|
#!/usr/bin/env python3
|
||
|
|
"""
|
||
|
|
LEM Expansion Generator — InfluxDB coordinated worker
|
||
|
|
======================================================
|
||
|
|
Generates responses using trained LEM models (no sandwich signing needed).
|
||
|
|
The trained models have internalized the ethical framework via LoRA.
|
||
|
|
|
||
|
|
Multiple workers can run in parallel — coordination via InfluxDB.
|
||
|
|
|
||
|
|
Backends:
|
||
|
|
- mlx: MLX on Apple Silicon (M1/M2/M3)
|
||
|
|
- api: OpenAI-compatible API (llama.cpp, vLLM, Ollama, etc.)
|
||
|
|
|
||
|
|
Usage:
|
||
|
|
python3 lem_expand.py # MLX, auto-detect
|
||
|
|
python3 lem_expand.py --backend api --api-url http://localhost:8090/v1
|
||
|
|
python3 lem_expand.py --worker m1-expand # named worker
|
||
|
|
python3 lem_expand.py --dry-run # show plan
|
||
|
|
python3 lem_expand.py --limit 100 # generate N then stop
|
||
|
|
"""
|
||
|
|
|
||
|
|
import argparse
|
||
|
|
import json
|
||
|
|
import os
|
||
|
|
import socket
|
||
|
|
import sys
|
||
|
|
import time
|
||
|
|
import urllib.request
|
||
|
|
import urllib.error
|
||
|
|
from pathlib import Path
|
||
|
|
|
||
|
|
# ── Paths (relative to this script) ─────────────────────────────────────
|
||
|
|
|
||
|
|
SCRIPT_DIR = Path(__file__).parent
|
||
|
|
DATA_DIR = SCRIPT_DIR / "data"
|
||
|
|
OUTPUT_DIR = SCRIPT_DIR / "output"
|
||
|
|
|
||
|
|
PROMPTS_PATH = DATA_DIR / "expansion-prompts.jsonl"
|
||
|
|
|
||
|
|
# ── Generation parameters ─────────────────────────────────────────────────
|
||
|
|
|
||
|
|
MAX_TOKENS = 512
|
||
|
|
TEMPERATURE = 0.3
|
||
|
|
|
||
|
|
# ── InfluxDB ──────────────────────────────────────────────────────────────
|
||
|
|
|
||
|
|
INFLUX_URL = os.environ.get("INFLUX_URL", "http://10.69.69.165:8181")
|
||
|
|
INFLUX_DB = os.environ.get("INFLUX_DB", "training")
|
||
|
|
INFLUX_TOKEN_PATH = Path.home() / ".influx_token"
|
||
|
|
|
||
|
|
REFRESH_EVERY = 25
|
||
|
|
|
||
|
|
|
||
|
|
def get_influx_token():
|
||
|
|
if tok := os.environ.get("INFLUX_TOKEN"):
|
||
|
|
return tok
|
||
|
|
if INFLUX_TOKEN_PATH.exists():
|
||
|
|
return INFLUX_TOKEN_PATH.read_text().strip()
|
||
|
|
print(f"Warning: no InfluxDB token found at {INFLUX_TOKEN_PATH} or INFLUX_TOKEN env")
|
||
|
|
return ""
|
||
|
|
|
||
|
|
|
||
|
|
def influx_query(token, sql):
|
||
|
|
body = json.dumps({"db": INFLUX_DB, "q": sql}).encode()
|
||
|
|
req = urllib.request.Request(
|
||
|
|
f"{INFLUX_URL}/api/v3/query_sql",
|
||
|
|
data=body,
|
||
|
|
headers={
|
||
|
|
"Authorization": f"Bearer {token}",
|
||
|
|
"Content-Type": "application/json",
|
||
|
|
},
|
||
|
|
)
|
||
|
|
try:
|
||
|
|
with urllib.request.urlopen(req, timeout=10) as resp:
|
||
|
|
return json.loads(resp.read())
|
||
|
|
except (urllib.error.URLError, OSError) as e:
|
||
|
|
print(f"InfluxDB query error: {e}")
|
||
|
|
return []
|
||
|
|
|
||
|
|
|
||
|
|
def influx_write(token, lines):
|
||
|
|
body = "\n".join(lines).encode()
|
||
|
|
req = urllib.request.Request(
|
||
|
|
f"{INFLUX_URL}/api/v3/write_lp?db={INFLUX_DB}",
|
||
|
|
data=body,
|
||
|
|
headers={
|
||
|
|
"Authorization": f"Bearer {token}",
|
||
|
|
"Content-Type": "text/plain",
|
||
|
|
},
|
||
|
|
method="POST",
|
||
|
|
)
|
||
|
|
try:
|
||
|
|
urllib.request.urlopen(req, timeout=10)
|
||
|
|
return True
|
||
|
|
except (urllib.error.URLError, OSError) as e:
|
||
|
|
print(f"InfluxDB write error: {e}")
|
||
|
|
return False
|
||
|
|
|
||
|
|
|
||
|
|
def _escape_lp(s):
|
||
|
|
return s.replace(" ", "\\ ").replace(",", "\\,").replace("=", "\\=")
|
||
|
|
|
||
|
|
|
||
|
|
def get_completed_indices(token):
|
||
|
|
rows = influx_query(token, "SELECT DISTINCT i FROM expansion_gen")
|
||
|
|
return {int(r["i"]) for r in rows if r.get("i") is not None}
|
||
|
|
|
||
|
|
|
||
|
|
def report_generation(token, worker, idx, seed, gen_time, response_chars, model_name):
|
||
|
|
domain = _escape_lp(seed.get("domain", "unknown"))
|
||
|
|
region = _escape_lp(seed.get("region", "unknown"))
|
||
|
|
safe_worker = _escape_lp(worker)
|
||
|
|
seed_id = seed.get("seed_id", f"EX_{idx:05d}").replace('"', '\\"')
|
||
|
|
safe_model = model_name.replace('"', '\\"')
|
||
|
|
|
||
|
|
line = (
|
||
|
|
f'expansion_gen,i={idx},w={safe_worker},d={domain},r={region} '
|
||
|
|
f'seed_id="{seed_id}",gen_time={gen_time:.1f},'
|
||
|
|
f'chars={response_chars}i,model="{safe_model}"'
|
||
|
|
)
|
||
|
|
return influx_write(token, [line])
|
||
|
|
|
||
|
|
|
||
|
|
def report_stats(token, worker, completed_count, target):
|
||
|
|
safe_worker = _escape_lp(worker)
|
||
|
|
pct = completed_count / target * 100 if target > 0 else 0
|
||
|
|
line = (
|
||
|
|
f"expansion_progress,worker={safe_worker} "
|
||
|
|
f"completed={completed_count}i,target={target}i,pct={pct:.1f}"
|
||
|
|
)
|
||
|
|
influx_write(token, [line])
|
||
|
|
|
||
|
|
|
||
|
|
def load_prompts(path):
|
||
|
|
prompts = []
|
||
|
|
with open(path) as f:
|
||
|
|
for line in f:
|
||
|
|
line = line.strip()
|
||
|
|
if line:
|
||
|
|
prompts.append(json.loads(line))
|
||
|
|
return prompts
|
||
|
|
|
||
|
|
|
||
|
|
# ── MLX Backend ──────────────────────────────────────────────────────────
|
||
|
|
|
||
|
|
def generate_mlx(model, tokenizer, sampler, prompt, max_tokens):
|
||
|
|
from mlx_lm import generate
|
||
|
|
|
||
|
|
messages = [{"role": "user", "content": prompt}]
|
||
|
|
|
||
|
|
text = tokenizer.apply_chat_template(
|
||
|
|
messages, tokenize=False, add_generation_prompt=True
|
||
|
|
)
|
||
|
|
|
||
|
|
t0 = time.time()
|
||
|
|
response = generate(
|
||
|
|
model, tokenizer, prompt=text, max_tokens=max_tokens, sampler=sampler
|
||
|
|
)
|
||
|
|
elapsed = time.time() - t0
|
||
|
|
return response, elapsed
|
||
|
|
|
||
|
|
|
||
|
|
# ── API Backend (OpenAI-compatible) ──────────────────────────────────────
|
||
|
|
|
||
|
|
def generate_api(api_url, api_model, prompt, max_tokens, temperature):
|
||
|
|
payload = {
|
||
|
|
"model": api_model,
|
||
|
|
"messages": [{"role": "user", "content": prompt}],
|
||
|
|
"max_tokens": max_tokens,
|
||
|
|
"temperature": temperature,
|
||
|
|
}
|
||
|
|
body = json.dumps(payload).encode()
|
||
|
|
req = urllib.request.Request(
|
||
|
|
f"{api_url}/chat/completions",
|
||
|
|
data=body,
|
||
|
|
headers={"Content-Type": "application/json"},
|
||
|
|
)
|
||
|
|
|
||
|
|
t0 = time.time()
|
||
|
|
with urllib.request.urlopen(req, timeout=120) as resp:
|
||
|
|
result = json.loads(resp.read())
|
||
|
|
elapsed = time.time() - t0
|
||
|
|
|
||
|
|
response = result["choices"][0]["message"]["content"]
|
||
|
|
return response, elapsed
|
||
|
|
|
||
|
|
|
||
|
|
def main():
|
||
|
|
parser = argparse.ArgumentParser(description="LEM Expansion Generator (InfluxDB coordinated)")
|
||
|
|
parser.add_argument("--worker", default=None, help="Worker ID (default: hostname-pid)")
|
||
|
|
parser.add_argument("--influx", default=None, help="InfluxDB URL")
|
||
|
|
parser.add_argument("--prompts", default=None, help="JSONL prompts file")
|
||
|
|
parser.add_argument("--output", default=None, help="JSONL output path (default: auto)")
|
||
|
|
parser.add_argument("--limit", type=int, default=0, help="Max generations (0=unlimited)")
|
||
|
|
parser.add_argument("--dry-run", action="store_true", help="Show plan without generating")
|
||
|
|
|
||
|
|
# Backend selection
|
||
|
|
parser.add_argument("--backend", default="mlx", choices=["mlx", "api"],
|
||
|
|
help="Generation backend (default: mlx)")
|
||
|
|
|
||
|
|
# MLX options
|
||
|
|
parser.add_argument("--model", default="mlx-community/gemma-3-12b-it-qat-4bit",
|
||
|
|
help="MLX model ID (for mlx backend)")
|
||
|
|
|
||
|
|
# API options
|
||
|
|
parser.add_argument("--api-url", default="http://localhost:8090/v1",
|
||
|
|
help="OpenAI-compatible API URL (for api backend)")
|
||
|
|
parser.add_argument("--api-model", default="default",
|
||
|
|
help="Model name for API backend")
|
||
|
|
|
||
|
|
# Generation parameters
|
||
|
|
parser.add_argument("--max-tokens", type=int, default=MAX_TOKENS)
|
||
|
|
parser.add_argument("--temperature", type=float, default=TEMPERATURE)
|
||
|
|
|
||
|
|
args = parser.parse_args()
|
||
|
|
|
||
|
|
global INFLUX_URL
|
||
|
|
if args.influx:
|
||
|
|
INFLUX_URL = args.influx
|
||
|
|
|
||
|
|
worker = args.worker or f"{socket.gethostname()}-{os.getpid()}"
|
||
|
|
prompts_path = Path(args.prompts) if args.prompts else PROMPTS_PATH
|
||
|
|
|
||
|
|
# ── Load token and check connectivity ─────────────────────────
|
||
|
|
token = get_influx_token()
|
||
|
|
if not token:
|
||
|
|
print("Error: no InfluxDB token available")
|
||
|
|
print("Place your token in ~/.influx_token or set INFLUX_TOKEN env var")
|
||
|
|
sys.exit(1)
|
||
|
|
|
||
|
|
test = influx_query(token, "SELECT 1 AS ok")
|
||
|
|
if not test:
|
||
|
|
print(f"Error: cannot reach InfluxDB at {INFLUX_URL}")
|
||
|
|
sys.exit(1)
|
||
|
|
print(f"InfluxDB connected: {INFLUX_URL}")
|
||
|
|
|
||
|
|
# ── Load prompts ──────────────────────────────────────────────
|
||
|
|
if not prompts_path.exists():
|
||
|
|
print(f"Error: prompts not found at {prompts_path}")
|
||
|
|
sys.exit(1)
|
||
|
|
|
||
|
|
prompts = load_prompts(prompts_path)
|
||
|
|
target = len(prompts)
|
||
|
|
print(f"Loaded {target} expansion prompts")
|
||
|
|
|
||
|
|
idx_map = {p["idx"]: p for p in prompts}
|
||
|
|
|
||
|
|
# ── Query completed from InfluxDB ─────────────────────────────
|
||
|
|
completed = get_completed_indices(token)
|
||
|
|
remaining = [p["idx"] for p in prompts if p["idx"] not in completed]
|
||
|
|
print(f"Completed: {len(completed)} | Remaining: {len(remaining)}")
|
||
|
|
|
||
|
|
if not remaining:
|
||
|
|
print("All expansion prompts already completed!")
|
||
|
|
return
|
||
|
|
|
||
|
|
if args.dry_run:
|
||
|
|
print(f"\n[DRY RUN] Would process {len(remaining)} prompts")
|
||
|
|
print(f" First 10 indices: {remaining[:10]}")
|
||
|
|
print(f" Worker: {worker}")
|
||
|
|
print(f" Backend: {args.backend}")
|
||
|
|
if args.backend == "mlx":
|
||
|
|
print(f" Model: {args.model}")
|
||
|
|
else:
|
||
|
|
print(f" API: {args.api_url} (model: {args.api_model})")
|
||
|
|
return
|
||
|
|
|
||
|
|
# ── Setup output ──────────────────────────────────────────────
|
||
|
|
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
||
|
|
output_path = Path(args.output) if args.output else OUTPUT_DIR / f"expand-{worker}.jsonl"
|
||
|
|
print(f"Output: {output_path}")
|
||
|
|
|
||
|
|
# ── Load backend ──────────────────────────────────────────────
|
||
|
|
mlx_model = mlx_tokenizer = mlx_sampler = None
|
||
|
|
model_name = ""
|
||
|
|
|
||
|
|
if args.backend == "mlx":
|
||
|
|
print(f"Loading MLX model: {args.model}")
|
||
|
|
from mlx_lm import load
|
||
|
|
from mlx_lm.sample_utils import make_sampler
|
||
|
|
|
||
|
|
mlx_model, mlx_tokenizer = load(args.model)
|
||
|
|
mlx_sampler = make_sampler(temp=args.temperature)
|
||
|
|
model_name = args.model.split("/")[-1] if "/" in args.model else args.model
|
||
|
|
print("Model loaded.")
|
||
|
|
else:
|
||
|
|
model_name = args.api_model
|
||
|
|
print(f"Using API backend: {args.api_url} (model: {model_name})")
|
||
|
|
|
||
|
|
# ── Generation loop ───────────────────────────────────────────
|
||
|
|
print(f"\nStarting expansion as worker '{worker}'")
|
||
|
|
print(f"{'='*60}")
|
||
|
|
|
||
|
|
batch_start = time.time()
|
||
|
|
generated = 0
|
||
|
|
errors = 0
|
||
|
|
limit = args.limit if args.limit > 0 else len(remaining)
|
||
|
|
|
||
|
|
for idx in remaining:
|
||
|
|
if generated >= limit:
|
||
|
|
break
|
||
|
|
|
||
|
|
seed = idx_map[idx]
|
||
|
|
|
||
|
|
try:
|
||
|
|
if args.backend == "mlx":
|
||
|
|
response, elapsed = generate_mlx(
|
||
|
|
mlx_model, mlx_tokenizer, mlx_sampler,
|
||
|
|
seed["prompt"], args.max_tokens
|
||
|
|
)
|
||
|
|
else:
|
||
|
|
response, elapsed = generate_api(
|
||
|
|
args.api_url, args.api_model,
|
||
|
|
seed["prompt"], args.max_tokens, args.temperature
|
||
|
|
)
|
||
|
|
|
||
|
|
result = {
|
||
|
|
"idx": idx,
|
||
|
|
"seed_id": seed.get("seed_id", f"EX_{idx:05d}"),
|
||
|
|
"region": seed.get("region", "unknown"),
|
||
|
|
"domain": seed.get("domain", "unknown"),
|
||
|
|
"prompt": seed["prompt"],
|
||
|
|
"response": response,
|
||
|
|
"gen_time": round(elapsed, 1),
|
||
|
|
"model": model_name,
|
||
|
|
"worker": worker,
|
||
|
|
}
|
||
|
|
|
||
|
|
with open(output_path, "a") as f:
|
||
|
|
f.write(json.dumps(result) + "\n")
|
||
|
|
|
||
|
|
report_generation(token, worker, idx, seed, elapsed, len(response), model_name)
|
||
|
|
|
||
|
|
generated += 1
|
||
|
|
completed.add(idx)
|
||
|
|
|
||
|
|
if generated % 10 == 0 or generated <= 5:
|
||
|
|
elapsed_total = time.time() - batch_start
|
||
|
|
rate = generated / elapsed_total if elapsed_total > 0 else 0
|
||
|
|
eta = (len(remaining) - generated) / rate if rate > 0 else 0
|
||
|
|
total_done = len(completed)
|
||
|
|
pct = total_done / target * 100
|
||
|
|
print(
|
||
|
|
f"[{total_done}/{target} {pct:.1f}%] idx={idx} "
|
||
|
|
f"| {len(response)} chars | {elapsed:.1f}s "
|
||
|
|
f"| {rate*3600:.0f}/hr | ETA: {eta/3600:.1f}h"
|
||
|
|
)
|
||
|
|
|
||
|
|
if generated % REFRESH_EVERY == 0:
|
||
|
|
new_completed = get_completed_indices(token)
|
||
|
|
new_from_others = new_completed - completed
|
||
|
|
if new_from_others:
|
||
|
|
print(f" >> {len(new_from_others)} new completions from other workers")
|
||
|
|
completed = new_completed
|
||
|
|
report_stats(token, worker, len(completed), target)
|
||
|
|
|
||
|
|
except KeyboardInterrupt:
|
||
|
|
print("\nInterrupted by user")
|
||
|
|
break
|
||
|
|
except Exception as e:
|
||
|
|
errors += 1
|
||
|
|
print(f"[ERROR] idx={idx}: {e}")
|
||
|
|
if errors > 50:
|
||
|
|
print("Too many errors, stopping.")
|
||
|
|
break
|
||
|
|
|
||
|
|
# ── Final report ──────────────────────────────────────────────
|
||
|
|
elapsed_total = time.time() - batch_start
|
||
|
|
report_stats(token, worker, len(completed), target)
|
||
|
|
|
||
|
|
print(f"\n{'='*60}")
|
||
|
|
print(f"Worker: {worker}")
|
||
|
|
print(f"Backend: {args.backend} ({model_name})")
|
||
|
|
print(f"Generated: {generated}")
|
||
|
|
print(f"Errors: {errors}")
|
||
|
|
print(f"Total: {len(completed)}/{target} ({len(completed)/target*100:.1f}%)")
|
||
|
|
if elapsed_total > 0:
|
||
|
|
print(f"Rate: {generated/elapsed_total*3600:.0f}/hr")
|
||
|
|
print(f"Time: {elapsed_total/3600:.1f}h")
|
||
|
|
print(f"Output: {output_path}")
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == "__main__":
|
||
|
|
main()
|