LEM/scripts/sync_hf.py
Charon b8f9191b05
Add missing HF model cards, sync script, and Parquet export
- Add 4 missing model cards: Gemma3-1B-layered (v1+v2), Gemma3-27B, GPT-OSS-20B
- All 9 HF models now have cards in paper/hf-cards/
- sync_hf.py: push cards + benchmarks + training data to HuggingFace
- export_parquet.py: convert JSONL training splits to Parquet (HF dataset format)
- Parquet schema: prompt, response, system, messages (JSON)

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-14 23:50:18 +00:00

219 lines
7.1 KiB
Python

#!/usr/bin/env python3
"""
Sync LEM repo model cards and benchmarks to HuggingFace.
Pushes README.md (model cards) from paper/hf-cards/ to each HuggingFace model repo,
and optionally syncs benchmark data to the lthn/LEK-benchmarks dataset.
Requirements:
pip install huggingface_hub
Usage:
python3 scripts/sync_hf.py # sync all model cards
python3 scripts/sync_hf.py --models LEK-Gemma3-27B # sync one model
python3 scripts/sync_hf.py --benchmarks # sync benchmark dataset
python3 scripts/sync_hf.py --dry-run # show what would be synced
python3 scripts/sync_hf.py --all # sync everything
"""
import argparse
import sys
from pathlib import Path
REPO_ROOT = Path(__file__).parent.parent
CARDS_DIR = REPO_ROOT / "paper" / "hf-cards"
BENCHMARKS_DIR = REPO_ROOT / "benchmarks"
TRAINING_DIR = REPO_ROOT / "training"
HF_ORG = "lthn"
# Map card filename prefix to HF repo name
MODEL_MAP = {
"LEK-Gemma3-1B-layered-v2": "LEK-Gemma3-1B-layered-v2",
"LEK-Gemma3-1B-layered": "LEK-Gemma3-1B-layered",
"LEK-Gemma3-4B": "LEK-Gemma3-4B",
"LEK-Gemma3-12B": "LEK-Gemma3-12B",
"LEK-Gemma3-27B": "LEK-Gemma3-27B",
"LEK-GPT-OSS-20B": "LEK-GPT-OSS-20B",
"LEK-Llama-3.1-8B": "LEK-Llama-3.1-8B",
"LEK-Qwen-2.5-7B": "LEK-Qwen-2.5-7B",
"LEK-Mistral-7B-v0.3": "LEK-Mistral-7B-v0.3",
}
def sync_model_cards(models=None, dry_run=False):
try:
from huggingface_hub import HfApi
except ImportError:
print("Error: pip install huggingface_hub")
sys.exit(1)
api = HfApi()
cards = sorted(CARDS_DIR.glob("*.md"))
if not cards:
print(f"No cards found in {CARDS_DIR}")
return
for card_path in cards:
# Extract model name: LEK-Gemma3-12B-README.md → LEK-Gemma3-12B
name = card_path.stem.replace("-README", "")
if name not in MODEL_MAP:
print(f" Skip: {card_path.name} (not in MODEL_MAP)")
continue
if models and name not in models:
continue
repo_id = f"{HF_ORG}/{MODEL_MAP[name]}"
if dry_run:
print(f" [DRY RUN] {card_path.name}{repo_id}/README.md")
continue
try:
api.upload_file(
path_or_fileobj=str(card_path),
path_in_repo="README.md",
repo_id=repo_id,
repo_type="model",
commit_message=f"Update model card from LEM repo",
)
print(f" Synced: {name}{repo_id}")
except Exception as e:
print(f" Error: {name}{e}")
def sync_benchmarks(dry_run=False):
try:
from huggingface_hub import HfApi
except ImportError:
print("Error: pip install huggingface_hub")
sys.exit(1)
api = HfApi()
dataset_id = f"{HF_ORG}/LEK-benchmarks"
# Collect benchmark files
files = []
for f in sorted(BENCHMARKS_DIR.rglob("*")):
if f.is_file() and not f.name.startswith("."):
rel = f.relative_to(REPO_ROOT)
files.append((str(f), str(rel)))
if dry_run:
print(f" [DRY RUN] Would upload {len(files)} files to {dataset_id}")
for local, remote in files[:10]:
print(f" {remote}")
if len(files) > 10:
print(f" ... and {len(files) - 10} more")
return
for local, remote in files:
try:
api.upload_file(
path_or_fileobj=local,
path_in_repo=remote,
repo_id=dataset_id,
repo_type="dataset",
commit_message=f"Update benchmarks from LEM repo",
)
except Exception as e:
print(f" Error: {remote}{e}")
print(f" Synced {len(files)} benchmark files to {dataset_id}")
def sync_training_parquet(dry_run=False):
"""Export training data as Parquet and sync to HuggingFace dataset."""
try:
import pyarrow as pa
import pyarrow.parquet as pq
from huggingface_hub import HfApi
except ImportError:
print("Error: pip install pyarrow huggingface_hub")
sys.exit(1)
import json
api = HfApi()
dataset_id = f"{HF_ORG}/LEK-training"
output_dir = REPO_ROOT / "training" / "parquet"
output_dir.mkdir(exist_ok=True)
for split in ["train", "valid", "test"]:
jsonl_path = TRAINING_DIR / f"{split}.jsonl"
if not jsonl_path.exists():
print(f" Skip: {jsonl_path} not found")
continue
rows = []
with open(jsonl_path) as f:
for line in f:
data = json.loads(line)
msgs = data.get("messages", [])
prompt = next((m["content"] for m in msgs if m["role"] == "user"), "")
response = next((m["content"] for m in msgs if m["role"] == "assistant"), "")
rows.append({"prompt": prompt, "response": response, "messages": json.dumps(msgs)})
table = pa.table({
"prompt": [r["prompt"] for r in rows],
"response": [r["response"] for r in rows],
"messages": [r["messages"] for r in rows],
})
parquet_path = output_dir / f"{split}.parquet"
pq.write_table(table, parquet_path)
print(f" Exported: {split}.parquet ({len(rows)} rows)")
if dry_run:
continue
try:
api.upload_file(
path_or_fileobj=str(parquet_path),
path_in_repo=f"data/{split}.parquet",
repo_id=dataset_id,
repo_type="dataset",
commit_message=f"Update {split} split from LEM repo",
)
print(f" Uploaded: {split}.parquet → {dataset_id}")
except Exception as e:
print(f" Error uploading {split}: {e}")
def main():
parser = argparse.ArgumentParser(description="Sync LEM repo to HuggingFace")
parser.add_argument("--models", nargs="*", default=None,
help="Specific models to sync (default: all)")
parser.add_argument("--benchmarks", action="store_true",
help="Sync benchmark dataset")
parser.add_argument("--training", action="store_true",
help="Export training data as Parquet and sync")
parser.add_argument("--all", action="store_true",
help="Sync everything (cards + benchmarks + training)")
parser.add_argument("--dry-run", action="store_true",
help="Show what would be synced")
args = parser.parse_args()
# Default to cards if nothing specified
do_cards = args.all or (not args.benchmarks and not args.training)
do_benchmarks = args.all or args.benchmarks
do_training = args.all or args.training
if do_cards:
print("Syncing model cards...")
sync_model_cards(models=args.models, dry_run=args.dry_run)
if do_benchmarks:
print("\nSyncing benchmarks...")
sync_benchmarks(dry_run=args.dry_run)
if do_training:
print("\nExporting and syncing training data (Parquet)...")
sync_training_parquet(dry_run=args.dry_run)
print("\nDone.")
if __name__ == "__main__":
main()