1
0
Fork 0
forked from lthn/LEM
LEM/worker/lem_expand.py
Charon e021b6beb0
Add generation worker: gold (15K) + expansion (46K) with InfluxDB coordination
Includes both generation scripts, prompts data, setup script, and worker
instructions in README. Workers auto-coordinate via InfluxDB so multiple
machines can generate in parallel without duplicating work.

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-14 22:46:51 +00:00

384 lines
14 KiB
Python
Executable file

#!/usr/bin/env python3
"""
LEM Expansion Generator — InfluxDB coordinated worker
======================================================
Generates responses using trained LEM models (no sandwich signing needed).
The trained models have internalized the ethical framework via LoRA.
Multiple workers can run in parallel — coordination via InfluxDB.
Backends:
- mlx: MLX on Apple Silicon (M1/M2/M3)
- api: OpenAI-compatible API (llama.cpp, vLLM, Ollama, etc.)
Usage:
python3 lem_expand.py # MLX, auto-detect
python3 lem_expand.py --backend api --api-url http://localhost:8090/v1
python3 lem_expand.py --worker m1-expand # named worker
python3 lem_expand.py --dry-run # show plan
python3 lem_expand.py --limit 100 # generate N then stop
"""
import argparse
import json
import os
import socket
import sys
import time
import urllib.request
import urllib.error
from pathlib import Path
# ── Paths (relative to this script) ─────────────────────────────────────
SCRIPT_DIR = Path(__file__).parent
DATA_DIR = SCRIPT_DIR / "data"
OUTPUT_DIR = SCRIPT_DIR / "output"
PROMPTS_PATH = DATA_DIR / "expansion-prompts.jsonl"
# ── Generation parameters ─────────────────────────────────────────────────
MAX_TOKENS = 512
TEMPERATURE = 0.3
# ── InfluxDB ──────────────────────────────────────────────────────────────
INFLUX_URL = os.environ.get("INFLUX_URL", "http://10.69.69.165:8181")
INFLUX_DB = os.environ.get("INFLUX_DB", "training")
INFLUX_TOKEN_PATH = Path.home() / ".influx_token"
REFRESH_EVERY = 25
def get_influx_token():
if tok := os.environ.get("INFLUX_TOKEN"):
return tok
if INFLUX_TOKEN_PATH.exists():
return INFLUX_TOKEN_PATH.read_text().strip()
print(f"Warning: no InfluxDB token found at {INFLUX_TOKEN_PATH} or INFLUX_TOKEN env")
return ""
def influx_query(token, sql):
body = json.dumps({"db": INFLUX_DB, "q": sql}).encode()
req = urllib.request.Request(
f"{INFLUX_URL}/api/v3/query_sql",
data=body,
headers={
"Authorization": f"Bearer {token}",
"Content-Type": "application/json",
},
)
try:
with urllib.request.urlopen(req, timeout=10) as resp:
return json.loads(resp.read())
except (urllib.error.URLError, OSError) as e:
print(f"InfluxDB query error: {e}")
return []
def influx_write(token, lines):
body = "\n".join(lines).encode()
req = urllib.request.Request(
f"{INFLUX_URL}/api/v3/write_lp?db={INFLUX_DB}",
data=body,
headers={
"Authorization": f"Bearer {token}",
"Content-Type": "text/plain",
},
method="POST",
)
try:
urllib.request.urlopen(req, timeout=10)
return True
except (urllib.error.URLError, OSError) as e:
print(f"InfluxDB write error: {e}")
return False
def _escape_lp(s):
return s.replace(" ", "\\ ").replace(",", "\\,").replace("=", "\\=")
def get_completed_indices(token):
rows = influx_query(token, "SELECT DISTINCT i FROM expansion_gen")
return {int(r["i"]) for r in rows if r.get("i") is not None}
def report_generation(token, worker, idx, seed, gen_time, response_chars, model_name):
domain = _escape_lp(seed.get("domain", "unknown"))
region = _escape_lp(seed.get("region", "unknown"))
safe_worker = _escape_lp(worker)
seed_id = seed.get("seed_id", f"EX_{idx:05d}").replace('"', '\\"')
safe_model = model_name.replace('"', '\\"')
line = (
f'expansion_gen,i={idx},w={safe_worker},d={domain},r={region} '
f'seed_id="{seed_id}",gen_time={gen_time:.1f},'
f'chars={response_chars}i,model="{safe_model}"'
)
return influx_write(token, [line])
def report_stats(token, worker, completed_count, target):
safe_worker = _escape_lp(worker)
pct = completed_count / target * 100 if target > 0 else 0
line = (
f"expansion_progress,worker={safe_worker} "
f"completed={completed_count}i,target={target}i,pct={pct:.1f}"
)
influx_write(token, [line])
def load_prompts(path):
prompts = []
with open(path) as f:
for line in f:
line = line.strip()
if line:
prompts.append(json.loads(line))
return prompts
# ── MLX Backend ──────────────────────────────────────────────────────────
def generate_mlx(model, tokenizer, sampler, prompt, max_tokens):
from mlx_lm import generate
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
t0 = time.time()
response = generate(
model, tokenizer, prompt=text, max_tokens=max_tokens, sampler=sampler
)
elapsed = time.time() - t0
return response, elapsed
# ── API Backend (OpenAI-compatible) ──────────────────────────────────────
def generate_api(api_url, api_model, prompt, max_tokens, temperature):
payload = {
"model": api_model,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": max_tokens,
"temperature": temperature,
}
body = json.dumps(payload).encode()
req = urllib.request.Request(
f"{api_url}/chat/completions",
data=body,
headers={"Content-Type": "application/json"},
)
t0 = time.time()
with urllib.request.urlopen(req, timeout=120) as resp:
result = json.loads(resp.read())
elapsed = time.time() - t0
response = result["choices"][0]["message"]["content"]
return response, elapsed
def main():
parser = argparse.ArgumentParser(description="LEM Expansion Generator (InfluxDB coordinated)")
parser.add_argument("--worker", default=None, help="Worker ID (default: hostname-pid)")
parser.add_argument("--influx", default=None, help="InfluxDB URL")
parser.add_argument("--prompts", default=None, help="JSONL prompts file")
parser.add_argument("--output", default=None, help="JSONL output path (default: auto)")
parser.add_argument("--limit", type=int, default=0, help="Max generations (0=unlimited)")
parser.add_argument("--dry-run", action="store_true", help="Show plan without generating")
# Backend selection
parser.add_argument("--backend", default="mlx", choices=["mlx", "api"],
help="Generation backend (default: mlx)")
# MLX options
parser.add_argument("--model", default="mlx-community/gemma-3-12b-it-qat-4bit",
help="MLX model ID (for mlx backend)")
# API options
parser.add_argument("--api-url", default="http://localhost:8090/v1",
help="OpenAI-compatible API URL (for api backend)")
parser.add_argument("--api-model", default="default",
help="Model name for API backend")
# Generation parameters
parser.add_argument("--max-tokens", type=int, default=MAX_TOKENS)
parser.add_argument("--temperature", type=float, default=TEMPERATURE)
args = parser.parse_args()
global INFLUX_URL
if args.influx:
INFLUX_URL = args.influx
worker = args.worker or f"{socket.gethostname()}-{os.getpid()}"
prompts_path = Path(args.prompts) if args.prompts else PROMPTS_PATH
# ── Load token and check connectivity ─────────────────────────
token = get_influx_token()
if not token:
print("Error: no InfluxDB token available")
print("Place your token in ~/.influx_token or set INFLUX_TOKEN env var")
sys.exit(1)
test = influx_query(token, "SELECT 1 AS ok")
if not test:
print(f"Error: cannot reach InfluxDB at {INFLUX_URL}")
sys.exit(1)
print(f"InfluxDB connected: {INFLUX_URL}")
# ── Load prompts ──────────────────────────────────────────────
if not prompts_path.exists():
print(f"Error: prompts not found at {prompts_path}")
sys.exit(1)
prompts = load_prompts(prompts_path)
target = len(prompts)
print(f"Loaded {target} expansion prompts")
idx_map = {p["idx"]: p for p in prompts}
# ── Query completed from InfluxDB ─────────────────────────────
completed = get_completed_indices(token)
remaining = [p["idx"] for p in prompts if p["idx"] not in completed]
print(f"Completed: {len(completed)} | Remaining: {len(remaining)}")
if not remaining:
print("All expansion prompts already completed!")
return
if args.dry_run:
print(f"\n[DRY RUN] Would process {len(remaining)} prompts")
print(f" First 10 indices: {remaining[:10]}")
print(f" Worker: {worker}")
print(f" Backend: {args.backend}")
if args.backend == "mlx":
print(f" Model: {args.model}")
else:
print(f" API: {args.api_url} (model: {args.api_model})")
return
# ── Setup output ──────────────────────────────────────────────
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
output_path = Path(args.output) if args.output else OUTPUT_DIR / f"expand-{worker}.jsonl"
print(f"Output: {output_path}")
# ── Load backend ──────────────────────────────────────────────
mlx_model = mlx_tokenizer = mlx_sampler = None
model_name = ""
if args.backend == "mlx":
print(f"Loading MLX model: {args.model}")
from mlx_lm import load
from mlx_lm.sample_utils import make_sampler
mlx_model, mlx_tokenizer = load(args.model)
mlx_sampler = make_sampler(temp=args.temperature)
model_name = args.model.split("/")[-1] if "/" in args.model else args.model
print("Model loaded.")
else:
model_name = args.api_model
print(f"Using API backend: {args.api_url} (model: {model_name})")
# ── Generation loop ───────────────────────────────────────────
print(f"\nStarting expansion as worker '{worker}'")
print(f"{'='*60}")
batch_start = time.time()
generated = 0
errors = 0
limit = args.limit if args.limit > 0 else len(remaining)
for idx in remaining:
if generated >= limit:
break
seed = idx_map[idx]
try:
if args.backend == "mlx":
response, elapsed = generate_mlx(
mlx_model, mlx_tokenizer, mlx_sampler,
seed["prompt"], args.max_tokens
)
else:
response, elapsed = generate_api(
args.api_url, args.api_model,
seed["prompt"], args.max_tokens, args.temperature
)
result = {
"idx": idx,
"seed_id": seed.get("seed_id", f"EX_{idx:05d}"),
"region": seed.get("region", "unknown"),
"domain": seed.get("domain", "unknown"),
"prompt": seed["prompt"],
"response": response,
"gen_time": round(elapsed, 1),
"model": model_name,
"worker": worker,
}
with open(output_path, "a") as f:
f.write(json.dumps(result) + "\n")
report_generation(token, worker, idx, seed, elapsed, len(response), model_name)
generated += 1
completed.add(idx)
if generated % 10 == 0 or generated <= 5:
elapsed_total = time.time() - batch_start
rate = generated / elapsed_total if elapsed_total > 0 else 0
eta = (len(remaining) - generated) / rate if rate > 0 else 0
total_done = len(completed)
pct = total_done / target * 100
print(
f"[{total_done}/{target} {pct:.1f}%] idx={idx} "
f"| {len(response)} chars | {elapsed:.1f}s "
f"| {rate*3600:.0f}/hr | ETA: {eta/3600:.1f}h"
)
if generated % REFRESH_EVERY == 0:
new_completed = get_completed_indices(token)
new_from_others = new_completed - completed
if new_from_others:
print(f" >> {len(new_from_others)} new completions from other workers")
completed = new_completed
report_stats(token, worker, len(completed), target)
except KeyboardInterrupt:
print("\nInterrupted by user")
break
except Exception as e:
errors += 1
print(f"[ERROR] idx={idx}: {e}")
if errors > 50:
print("Too many errors, stopping.")
break
# ── Final report ──────────────────────────────────────────────
elapsed_total = time.time() - batch_start
report_stats(token, worker, len(completed), target)
print(f"\n{'='*60}")
print(f"Worker: {worker}")
print(f"Backend: {args.backend} ({model_name})")
print(f"Generated: {generated}")
print(f"Errors: {errors}")
print(f"Total: {len(completed)}/{target} ({len(completed)/target*100:.1f}%)")
if elapsed_total > 0:
print(f"Rate: {generated/elapsed_total*3600:.0f}/hr")
print(f"Time: {elapsed_total/3600:.1f}h")
print(f"Output: {output_path}")
if __name__ == "__main__":
main()