1
0
Fork 0
forked from lthn/blockchain
blockchain/tests/functional_tests/L2S.h

219 lines
6.7 KiB
C++

// Copyright (c) 2020 Zano Project (https://zano.org/)
// Copyright (c) 2020 Locksmith (acmxddk@gmail.com)
// Copyright (c) 2020 sowle (crypto.sowle@gmail.com)
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#pragma once
//
// This file contains the implementation of L2S membership proof protocol
// and a linkable ring signature scheme based on it.
//
point_t ml2s_rsum_impl(size_t n, size_t N, std::vector<point_t>::const_iterator X_array_bg_it, const std::vector<scalar_t>& c1_array,
const std::vector<scalar_t>& c3_array, const scalar_t& cn)
{
if (n == 1)
return *X_array_bg_it + cn * *(X_array_bg_it + 1);
// n >= 2, N >= 4
return ml2s_rsum_impl(n - 1, N / 2, X_array_bg_it, c1_array, c3_array, c1_array[n - 2]) +
cn * ml2s_rsum_impl(n - 1, N / 2, X_array_bg_it + N / 2, c1_array, c3_array, c3_array[n - 2]);
}
bool ml2s_rsum(size_t n, const std::vector<point_t>& X_array, const std::vector<scalar_t>& c1_array,
const std::vector<scalar_t>& c3_array, point_t& result)
{
size_t N = (size_t)1 << n;
CHECK_AND_ASSERT_MES(n != 0, false, "n == 0");
CHECK_AND_ASSERT_MES(N == X_array.size(), false, "|X_array| != N, " << X_array.size() << ", " << N);
CHECK_AND_ASSERT_MES(c1_array.size() == n, false, "|c1_array| != n, " << c1_array.size() << ", " << n);
CHECK_AND_ASSERT_MES(c3_array.size() == n - 1, false, "|c3_array| != n - 1, " << c3_array.size() << ", " << n - 1);
result = ml2s_rsum_impl(n, N, X_array.begin(), c1_array, c3_array, c1_array[n - 1]);
return true;
}
struct ml2s_signature_element
{
point_t Z0;
point_t T0;
scalar_t t0;
point_t Z;
std::vector<scalar_t> r_array; // size = n
std::vector<point_t> H_array; // size = n
point_t T;
scalar_t t;
};
struct ml2s_signature
{
scalar_t z;
std::vector<ml2s_signature_element> elements; // size = L
};
size_t log2sz(size_t x)
{
size_t r = 0;
while (x > 1)
x >>= 1, ++r;
return r;
}
template<typename T>
T invert_last_bit(T v)
{
return v ^ 1;
}
template<typename T>
bool is_power_of_2(T v)
{
while (v > 1)
{
if (v & 1)
return false;
v <<= 1;
}
return true;
}
bool ml2s_lnk_sig_verif(const scalar_t& m, const std::vector<point_t>& B_array, const ml2s_signature& signature, uint8_t* p_err = nullptr,
std::vector<point_t>* p_I_array = nullptr)
{
#define CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(cond, err_code) \
if (!(cond)) { LOG_PRINT_RED("ml2s_lnk_sig_verif: \"" << #cond << "\" is false at " << LOCATION_SS << ENDL << "error code = " << err_code, LOG_LEVEL_3); \
if (p_err) *p_err = err_code; return false; }
auto hash_point_lambda = [&signature](const point_t& point) { return point + signature.z * hash_helper_t::hp(point); };
size_t L = signature.elements.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(L > 0, 0);
size_t n = signature.elements[0].r_array.size();
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(n < 32, 4);
size_t N = (size_t)1 << n;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(B_array.size() == N / 2, 5);
std::vector<point_t> local_I_array;
if (p_I_array == nullptr)
p_I_array = &local_I_array;
p_I_array->resize(L);
std::vector<point_t> A_array(L);
for (size_t i = 0; i < L; ++i)
{
(*p_I_array)[i] = (signature.elements[i].Z0 - c_point_G) / signature.z;
A_array[i] = signature.elements[i].Z0;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(signature.elements[i].r_array.size() == n, 1);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(signature.elements[i].H_array.size() == n, 2);
}
scalar_t z_ = hash_helper_t::hs(m, B_array, *p_I_array);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(z_ == signature.z, 3);
scalar_t e = hash_helper_t::hs(signature.z);
std::vector<point_t> P_array(B_array.size());
for (size_t i = 0; i < B_array.size(); ++i)
P_array[i] = hash_point_lambda(B_array[i]);
point_t Q_shift = hash_helper_t::hs(A_array, P_array) * c_point_G;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(P_array.size() * 2 == N, 6);
std::vector<point_t> X_array(N);
// X_array = { P_array[0], Q_array[0], P_array[1], Q_array[1], etc. }
for (size_t i = 0; i < N; ++i)
{
if (i % 2 == 0)
X_array[i] = P_array[i / 2];
else
X_array[i] = hash_point_lambda(Q_shift + B_array[i / 2]);
}
// challenge c0
hash_helper_t::hs_t hs_calculator;
hs_calculator.reserve(1 + N + 3 * L);
hs_calculator.add_scalar(e);
hs_calculator.add_points_array(X_array);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hs_calculator.add_point(sel.Z0);
hs_calculator.add_point(sel.T0);
hs_calculator.add_point(sel.Z);
}
e = hs_calculator.calc_hash();
scalar_t c0 = e;
// check t0 * Z0 + c0 * Z == T0
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t0 * sel.Z0 + c0 * sel.Z == sel.T0, 7);
}
// challenges c11, c13
std::vector<scalar_t> c1_array; // counting from 0, so c11 is c1_array[0], will have n elements
std::vector<scalar_t> c3_array; // the same, will have n - 1 elements
hs_calculator.add_scalar(e);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hs_calculator.add_scalar(sel.t0);
hs_calculator.add_point(sel.H_array[0]);
}
e = hs_calculator.calc_hash();
c1_array.emplace_back(e);
c3_array.emplace_back(hash_helper_t::hs(e));
// ci1, ci3 for i in [2; n] -- corresponds c1_array for i in [1; n - 1], c3_array for i in [1; n - 2]
for (size_t i = 1; i < n; ++i)
{
hs_calculator.add_scalar(e);
for (size_t j = 0; j < L; ++j)
{
auto& sel = signature.elements[j];
hs_calculator.add_scalar(sel.r_array[i - 1]);
hs_calculator.add_point(sel.H_array[i]);
}
e = hs_calculator.calc_hash();
c1_array.emplace_back(e);
if (i != n - 1)
c3_array.emplace_back(hash_helper_t::hs(e));
}
// challenge c
hs_calculator.add_scalar(e);
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
hs_calculator.add_scalar(sel.r_array[n - 1]);
hs_calculator.add_point(sel.T);
}
scalar_t c = hs_calculator.calc_hash();
// Rsum
point_t R = c_point_G;
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(ml2s_rsum(n, X_array, c1_array, c3_array, R), 8);
// final checks
for (size_t i = 0; i < L; ++i)
{
auto& sel = signature.elements[i];
point_t S = sel.Z;
for (size_t j = 0; j < n; ++j)
{
S = S + sel.r_array[j] * sel.H_array[j];
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(!S.is_zero(), 9);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.r_array[j] != 0, 10);
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(!sel.H_array[j].is_zero(), 11);
}
CHECK_AND_FAIL_WITH_ERROR_IF_FALSE(sel.t * S + c * R == sel.T, 12);
}
return true;
#undef CHECK_AND_FAIL_WITH_ERROR_IF_FALSE
}