Poindexter/docs/api.md

600 lines
No EOL
13 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# API Reference
Complete API documentation for the Poindexter library.
## Core Functions
### Version
```go
func Version() string
```
Returns the current version of the library.
**Returns:**
- `string`: The version string (e.g., "0.3.0")
**Example:**
```go
version := poindexter.Version()
fmt.Println(version) // Output: 0.3.0
```
---
### Hello
```go
func Hello(name string) string
```
Returns a greeting message.
**Parameters:**
- `name` (string): The name to greet. If empty, defaults to "World"
**Returns:**
- `string`: A greeting message
**Examples:**
```go
// Greet the world
message := poindexter.Hello("")
fmt.Println(message) // Output: Hello, World!
// Greet a specific person
message = poindexter.Hello("Alice")
fmt.Println(message) // Output: Hello, Alice!
```
---
## Sorting Functions
### Basic Sorting
#### SortInts
```go
func SortInts(data []int)
```
Sorts a slice of integers in ascending order in place.
**Example:**
```go
numbers := []int{3, 1, 4, 1, 5, 9}
poindexter.SortInts(numbers)
fmt.Println(numbers) // Output: [1 1 3 4 5 9]
```
---
#### SortIntsDescending
```go
func SortIntsDescending(data []int)
```
Sorts a slice of integers in descending order in place.
**Example:**
```go
numbers := []int{3, 1, 4, 1, 5, 9}
poindexter.SortIntsDescending(numbers)
fmt.Println(numbers) // Output: [9 5 4 3 1 1]
```
---
#### SortStrings
```go
func SortStrings(data []string)
```
Sorts a slice of strings in ascending order in place.
**Example:**
```go
words := []string{"banana", "apple", "cherry"}
poindexter.SortStrings(words)
fmt.Println(words) // Output: [apple banana cherry]
```
---
#### SortStringsDescending
```go
func SortStringsDescending(data []string)
```
Sorts a slice of strings in descending order in place.
---
#### SortFloat64s
```go
func SortFloat64s(data []float64)
```
Sorts a slice of float64 values in ascending order in place.
---
#### SortFloat64sDescending
```go
func SortFloat64sDescending(data []float64)
```
Sorts a slice of float64 values in descending order in place.
---
### Advanced Sorting
#### SortBy
```go
func SortBy[T any](data []T, less func(i, j int) bool)
```
Sorts a slice using a custom comparison function.
**Parameters:**
- `data`: The slice to sort
- `less`: A function that returns true if data[i] should come before data[j]
**Example:**
```go
type Person struct {
Name string
Age int
}
people := []Person{
{"Alice", 30},
{"Bob", 25},
{"Charlie", 35},
}
// Sort by age
poindexter.SortBy(people, func(i, j int) bool {
return people[i].Age < people[j].Age
})
// Result: [Bob(25) Alice(30) Charlie(35)]
```
---
#### SortByKey
```go
func SortByKey[T any, K int | float64 | string](data []T, key func(T) K)
```
Sorts a slice by extracting a comparable key from each element in ascending order.
**Parameters:**
- `data`: The slice to sort
- `key`: A function that extracts a sortable key from each element
**Example:**
```go
type Product struct {
Name string
Price float64
}
products := []Product{
{"Apple", 1.50},
{"Banana", 0.75},
{"Cherry", 3.00},
}
// Sort by price
poindexter.SortByKey(products, func(p Product) float64 {
return p.Price
})
// Result: [Banana(0.75) Apple(1.50) Cherry(3.00)]
```
---
#### SortByKeyDescending
```go
func SortByKeyDescending[T any, K int | float64 | string](data []T, key func(T) K)
```
Sorts a slice by extracting a comparable key from each element in descending order.
**Example:**
```go
type Student struct {
Name string
Score int
}
students := []Student{
{"Alice", 85},
{"Bob", 92},
{"Charlie", 78},
}
// Sort by score descending
poindexter.SortByKeyDescending(students, func(s Student) int {
return s.Score
})
// Result: [Bob(92) Alice(85) Charlie(78)]
```
---
### Checking if Sorted
#### IsSorted
```go
func IsSorted(data []int) bool
```
Checks if a slice of integers is sorted in ascending order.
---
#### IsSortedStrings
```go
func IsSortedStrings(data []string) bool
```
Checks if a slice of strings is sorted in ascending order.
---
#### IsSortedFloat64s
```go
func IsSortedFloat64s(data []float64) bool
```
Checks if a slice of float64 values is sorted in ascending order.
---
### Binary Search
#### BinarySearch
```go
func BinarySearch(data []int, target int) int
```
Performs a binary search on a sorted slice of integers.
**Parameters:**
- `data`: A sorted slice of integers
- `target`: The value to search for
**Returns:**
- `int`: The index where target is found, or -1 if not found
**Example:**
```go
numbers := []int{1, 3, 5, 7, 9, 11}
index := poindexter.BinarySearch(numbers, 7)
fmt.Println(index) // Output: 3
```
---
#### BinarySearchStrings
```go
func BinarySearchStrings(data []string, target string) int
```
Performs a binary search on a sorted slice of strings.
**Parameters:**
- `data`: A sorted slice of strings
- `target`: The value to search for
**Returns:**
- `int`: The index where target is found, or -1 if not found
## KDTree Helpers
Poindexter provides helpers to build normalized, weighted KD points from your own records. These functions minmax normalize each axis over your dataset, optionally invert axes where higher is better (to turn them into “lower cost”), and apply peraxis weights.
```go
func Build2D[T any](
items []T,
id func(T) string,
f1, f2 func(T) float64,
weights [2]float64,
invert [2]bool,
) ([]KDPoint[T], error)
func Build3D[T any](
items []T,
id func(T) string,
f1, f2, f3 func(T) float64,
weights [3]float64,
invert [3]bool,
) ([]KDPoint[T], error)
func Build4D[T any](
items []T,
id func(T) string,
f1, f2, f3, f4 func(T) float64,
weights [4]float64,
invert [4]bool,
) ([]KDPoint[T], error)
```
Example (4D over ping, hops, geo, score):
```go
// weights and inversion: flip score so higher is better → lower cost
weights := [4]float64{1.0, 0.7, 0.2, 1.2}
invert := [4]bool{false, false, false, true}
pts, err := poindexter.Build4D(
peers,
func(p Peer) string { return p.ID },
func(p Peer) float64 { return p.PingMS },
func(p Peer) float64 { return p.Hops },
func(p Peer) float64 { return p.GeoKM },
func(p Peer) float64 { return p.Score },
weights, invert,
)
if err != nil { panic(err) }
kdt, _ := poindexter.NewKDTree(pts, poindexter.WithMetric(poindexter.EuclideanDistance{}))
best, dist, _ := kdt.Nearest([]float64{0, 0, 0, 0})
```
Notes:
- Keep and reuse your normalization parameters (min/max) if you need consistency across updates; otherwise rebuild points when the candidate set changes.
- Use `invert` to turn “higher is better” features (like scores) into lower costs for distance calculations.
---
## KDTree Constructors and Errors
### NewKDTree
```go
func NewKDTree[T any](pts []KDPoint[T], opts ...KDOption) (*KDTree[T], error)
```
Build a KDTree from the provided points. All points must have the same dimensionality (> 0) and IDs (if provided) must be unique.
Possible errors:
- `ErrEmptyPoints`: no points provided
- `ErrZeroDim`: dimension must be at least 1
- `ErrDimMismatch`: inconsistent dimensionality among points
- `ErrDuplicateID`: duplicate point ID encountered
### NewKDTreeFromDim
```go
func NewKDTreeFromDim[T any](dim int, opts ...KDOption) (*KDTree[T], error)
```
Construct an empty KDTree with the given dimension, then populate later via `Insert`.
---
## KDTree Notes: Complexity, Ties, Concurrency
- Complexity: current implementation uses O(n) linear scans for queries (`Nearest`, `KNearest`, `Radius`). Inserts are O(1) amortized. Deletes by ID are O(1) using swap-delete (order not preserved).
- Tie ordering: when multiple neighbors have the same distance, ordering of ties is arbitrary and not stable between calls.
- Concurrency: KDTree is not safe for concurrent mutation. Wrap with a mutex or share immutable snapshots for read-mostly workloads.
See runnable examples in the repository `examples/` and the docs pages for 1D DHT and multi-dimensional KDTree usage.
## KDTree Normalization Stats (reuse across updates)
To keep normalization consistent across dynamic updates, compute peraxis min/max once and reuse it to build points later. This avoids drift when the candidate set changes.
### Types
```go
// AxisStats holds the min/max observed for a single axis.
type AxisStats struct {
Min float64
Max float64
}
// NormStats holds peraxis normalisation stats; for D dims, Stats has length D.
type NormStats struct {
Stats []AxisStats
}
```
### Compute normalization stats
```go
func ComputeNormStats2D[T any](items []T, f1, f2 func(T) float64) NormStats
func ComputeNormStats3D[T any](items []T, f1, f2, f3 func(T) float64) NormStats
func ComputeNormStats4D[T any](items []T, f1, f2, f3, f4 func(T) float64) NormStats
```
### Build with precomputed stats
```go
func Build2DWithStats[T any](
items []T,
id func(T) string,
f1, f2 func(T) float64,
weights [2]float64,
invert [2]bool,
stats NormStats,
) ([]KDPoint[T], error)
func Build3DWithStats[T any](
items []T,
id func(T) string,
f1, f2, f3 func(T) float64,
weights [3]float64,
invert [3]bool,
stats NormStats,
) ([]KDPoint[T], error)
func Build4DWithStats[T any](
items []T,
id func(T) string,
f1, f2, f3, f4 func(T) float64,
weights [4]float64,
invert [4]bool,
stats NormStats,
) ([]KDPoint[T], error)
```
#### Example (2D)
```go
// Compute stats once over your baseline set
stats := poindexter.ComputeNormStats2D(peers,
func(p Peer) float64 { return p.PingMS },
func(p Peer) float64 { return p.Hops },
)
// Build points using those stats (now or later)
pts, _ := poindexter.Build2DWithStats(
peers,
func(p Peer) string { return p.ID },
func(p Peer) float64 { return p.PingMS },
func(p Peer) float64 { return p.Hops },
[2]float64{1,1}, [2]bool{false,false}, stats,
)
```
Notes:
- If `min==max` for an axis, normalized value is `0` for that axis.
- `invert[i]` flips the normalized axis as `1 - n` before applying `weights[i]`.
- These helpers mirror `Build2D/3D/4D`, but use your provided `NormStats` instead of recomputing from the items slice.
---
## KDTree Normalization Helpers (ND)
Poindexter includes helpers to build KD points from arbitrary dimensions.
```go
func BuildND[T any](
items []T,
id func(T) string,
features []func(T) float64,
weights []float64,
invert []bool,
) ([]KDPoint[T], error)
// Like BuildND but never returns an error. It performs no validation beyond
// basic length checks and propagates NaN/Inf values from feature extractors.
func BuildNDNoErr[T any](
items []T,
id func(T) string,
features []func(T) float64,
weights []float64,
invert []bool,
) []KDPoint[T]
```
- `features`: extract raw values per axis.
- `weights`: per-axis weights, same length as `features`.
- `invert`: if true for an axis, uses `1 - normalized` before weighting (turns “higher is better” into lower cost).
- Use `ComputeNormStatsND` + `BuildNDWithStats` to reuse normalization between updates.
Example:
```go
pts := poindexter.BuildNDNoErr(records,
func(r Rec) string { return r.ID },
[]func(Rec) float64{
func(r Rec) float64 { return r.PingMS },
func(r Rec) float64 { return r.Hops },
func(r Rec) float64 { return r.GeoKM },
func(r Rec) float64 { return r.Score },
},
[]float64{1.0, 0.7, 0.2, 1.2},
[]bool{false, false, false, true},
)
```
---
## KDTree Backend selection
Poindexter provides two internal backends for KDTree queries:
- `linear`: always available; performs O(n) scans for `Nearest`, `KNearest`, and `Radius`.
- `gonum`: optimized KD backend compiled when you build with the `gonum` build tag; typically sub-linear on prunable datasets and modest dimensions.
### Types and options
```go
// KDBackend selects the internal engine used by KDTree.
type KDBackend string
const (
BackendLinear KDBackend = "linear"
BackendGonum KDBackend = "gonum"
)
// WithBackend selects the internal KDTree backend ("linear" or "gonum").
// If the requested backend is unavailable (e.g., missing build tag), the constructor
// falls back to the linear backend.
func WithBackend(b KDBackend) KDOption
```
### Default selection
- Default is `linear`.
- If you build your project with `-tags=gonum`, the default becomes `gonum`.
### Usage examples
```go
// Default metric is Euclidean; you can override with WithMetric.
pts := []poindexter.KDPoint[string]{
{ID: "A", Coords: []float64{0, 0}},
{ID: "B", Coords: []float64{1, 0}},
}
// Force Linear (always available)
lin, _ := poindexter.NewKDTree(pts, poindexter.WithBackend(poindexter.BackendLinear))
_, _, _ = lin.Nearest([]float64{0.9, 0.1})
// Force Gonum (requires building with: go build -tags=gonum)
gon, _ := poindexter.NewKDTree(pts, poindexter.WithBackend(poindexter.BackendGonum))
_, _, _ = gon.Nearest([]float64{0.9, 0.1})
```
### Supported metrics in the optimized backend
- Euclidean (L2), Manhattan (L1), Chebyshev (L∞).
- Cosine and Weighted-Cosine currently use the Linear backend.
See also the Performance guide for measured comparisons and guidance: `docs/perf.md`.