cli/tools/rag/README.md
Snider e5e6908416 fix: address PR review comments from CodeRabbit, Copilot, and Gemini
Fixes across 25 files addressing 46+ review comments:

- pkg/ai/metrics.go: handle error from Close() on writable file handle
- pkg/ansible: restore loop vars after loop, restore become settings,
  fix Upload with become=true and no password (use sudo -n), honour
  SSH timeout config, use E() helper for contextual errors, quote git
  refs in checkout commands
- pkg/rag: validate chunk config, guard negative-to-uint64 conversion,
  use E() helper for errors, add context timeout to Ollama HTTP calls
- pkg/deploy/python: fix exec.ExitError type assertion (was os.PathError),
  handle os.UserHomeDir() error
- pkg/build/buildcmd: use cmd.Context() instead of context.Background()
  for proper Ctrl+C cancellation
- install.bat: add curl timeouts, CRLF line endings, use --connect-timeout
  for archive downloads
- install.sh: use absolute path for version check in CI mode
- tools/rag: fix broken ingest.py function def, escape HTML in query.py,
  pin qdrant-client version, add markdown code block languages
- internal/cmd/rag: add chunk size validation, env override handling

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-03 22:33:43 +00:00

193 lines
4.8 KiB
Markdown

# RAG Pipeline for Host UK Documentation
Store documentation in a vector database so Claude (and local LLMs) can retrieve relevant context without being reminded every conversation.
## The Problem This Solves
> "The amount of times I've had to re-tell you how to make a Flux button is crazy"
Instead of wasting context window on "remember, Flux buttons work like this...", the RAG system:
1. Stores all documentation in Qdrant
2. Claude queries before answering
3. Relevant docs injected automatically
4. No more re-teaching
## Prerequisites
**Already running on your lab:**
- Qdrant: `linux.snider.dev:6333`
- Ollama: `linux.snider.dev:11434` (or local)
**Install Python deps:**
```bash
pip install -r requirements.txt
```
**Ensure embedding model is available:**
```bash
ollama pull nomic-embed-text
```
## Quick Start
### 1. Ingest Documentation
```bash
# Ingest recovered Host UK docs
python ingest.py /Users/snider/Code/host-uk/core/tasks/recovered-hostuk \
--collection hostuk-docs \
--recreate
# Ingest Flux UI docs separately (higher priority)
python ingest.py /path/to/flux-ui-docs \
--collection flux-ui-docs \
--recreate
```
### 2. Query the Database
```bash
# Search for Flux button docs
python query.py "how to create a Flux button component"
# Filter by category
python query.py "path sandboxing" --category architecture
# Get more results
python query.py "Vi personality" --top 10
# Output as JSON
python query.py "brand voice" --format json
# Output for LLM context injection
python query.py "Flux modal component" --format context
```
### 3. List Collections
```bash
python query.py --list-collections
python query.py --stats --collection flux-ui-docs
```
## Collections Strategy
| Collection | Content | Priority |
|------------|---------|----------|
| `flux-ui-docs` | Flux Pro component docs | High (UI questions) |
| `hostuk-docs` | Recovered implementation docs | Medium |
| `brand-docs` | Vi, brand voice, visual identity | For content generation |
| `lethean-docs` | SASE/dVPN technical docs | Product-specific |
## Integration with Claude Code
### Option 1: MCP Server (Best)
Create an MCP server that Claude can query:
```go
// In core CLI
func (s *RagServer) Query(query string) ([]Document, error) {
// Query Qdrant
// Return relevant docs
}
```
Then Claude can call `rag.query("Flux button")` and get docs automatically.
### Option 2: CLAUDE.md Instruction
Add to project CLAUDE.md:
```markdown
## Before Answering UI Questions
When asked about Flux UI components, query the RAG database first:
```bash
python /path/to/query.py "your question" --collection flux-ui-docs --format context
```
Include the retrieved context in your response.
```
### Option 3: Claude Code Hook
Create a hook that auto-injects context for certain queries.
## Category Taxonomy
The ingestion automatically categorizes files:
| Category | Matches |
|----------|---------|
| `ui-component` | flux, ui/component |
| `brand` | brand, mascot |
| `product-brief` | brief |
| `help-doc` | help, draft |
| `task` | task, plan |
| `architecture` | architecture, migration |
| `documentation` | default |
## Environment Variables
| Variable | Default | Description |
|----------|---------|-------------|
| `QDRANT_HOST` | linux.snider.dev | Qdrant server |
| `QDRANT_PORT` | 6333 | Qdrant port |
| `EMBEDDING_MODEL` | nomic-embed-text | Ollama model |
| `CHUNK_SIZE` | 500 | Characters per chunk |
| `CHUNK_OVERLAP` | 50 | Overlap between chunks |
## Training a Model vs RAG
**RAG** (what this does):
- Model weights unchanged
- Documents retrieved at query time
- Knowledge updates instantly (re-ingest)
- Good for: facts, API docs, current information
**Fine-tuning** (separate process):
- Model weights updated
- Knowledge baked into model
- Requires retraining to update
- Good for: style, patterns, conventions
**For Flux UI**: RAG is perfect. The docs change, API changes, you want current info.
**For Vi's voice**: Fine-tuning is better. Style doesn't change often, should be "baked in".
## Vector Math (For Understanding)
```text
"How do I make a Flux button?"
↓ Embedding
[0.12, -0.45, 0.78, ...768 floats...]
↓ Cosine similarity search
Find chunks with similar vectors
↓ Results
1. doc/ui/flux/components/button.md (score: 0.89)
2. doc/ui/flux/forms.md (score: 0.76)
3. doc/ui/flux/components/input.md (score: 0.71)
```
The embedding model converts text to "meaning vectors". Similar meanings = similar vectors = found by search.
## Troubleshooting
**"No results found"**
- Lower threshold: `--threshold 0.3`
- Check collection has data: `--stats`
- Verify Ollama is running: `ollama list`
**"Connection refused"**
- Check Qdrant is running: `curl http://linux.snider.dev:6333/collections`
- Check firewall/network
**"Embedding model not available"**
```bash
ollama pull nomic-embed-text
```
---
*Part of the Host UK Core CLI tooling*