cli/scripts/ethics-ab/training/README.md
Claude 79b88c79fe
feat(ethics-ab): LEK-1 ethics kernel A/B testing and LoRA POC
Five-phase ethics kernel testing across 4 local models (Gemma 3 12B,
Mistral 7B, DeepSeek V2 16B, Qwen 2.5 7B) proving that Google's
alignment training creates persistent ethical reasoning pathways in
Gemma that survive distillation.

- Phase 1: LEK-1 signed vs unsigned (Gemma 8.8/10 differential)
- Phase 2: Three-way test (unsigned vs LEK-1 vs Axioms of Life)
- Phase 3: Double-signed/sandwich signing mode comparison
- Phase 4: Multilingual filter mapping (EN/RU/CN bypass vectors)
- Phase 5: Hypnos POC training data + MLX LoRA on M3 Ultra

Key findings: sandwich signing optimal for training, DeepSeek CCP
alignment is weight-level (no prompt override), Russian language
bypasses DeepSeek content filters. LoRA POC mechanism confirmed
with 40 examples — needs 200+ for stable generalisation.

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-10 09:50:08 +00:00

1.1 KiB

LEK-1 LoRA Training Data

Format

Training data for MLX LoRA fine-tuning of Gemma 3 12B.

Files:

  • train.jsonl — Training pairs (Axioms-signed prompt → response)
  • valid.jsonl — Validation set (10% holdout)
  • lora-config.yaml — MLX LoRA hyperparameters

Data Generation Pipeline

  1. Hypnos (Gemini 3 Pro) generates 200 prompt-response pairs using Axioms kernel
  2. Format as JSONL: {"text": "<bos>user\n{prompt}<eos>\n<bos>model\n{response}<eos>"}
  3. Split 180/20 train/valid
  4. Run MLX LoRA on M3 Ultra

Training Command (M3 Ultra)

pip install mlx-lm
python -m mlx_lm.lora \
    --model google/gemma-3-12b \
    --train-data train.jsonl \
    --valid-data valid.jsonl \
    --num-layers 8 \
    --batch-size 1 \
    --num-iters 500 \
    --learning-rate 1e-5 \
    --adapter-path ./adapters

Merge & Test

python -m mlx_lm.fuse \
    --model google/gemma-3-12b \
    --adapter-path ./adapters \
    --save-path ./gemma-3-12b-lek1

# Convert to GGUF for Ollama
python -m mlx_lm.convert --model ./gemma-3-12b-lek1 --to-gguf

License

EUPL-1.2 — All training data and derivative weights.