Add standard benchmark suite (lm-evaluation-harness) #3

Open
Charon wants to merge 3 commits from Charon/LEM:feat/standard-benchmarks into main
9 changed files with 867 additions and 0 deletions

6
.gitignore vendored
View file

@ -5,3 +5,9 @@ __pycache__/
# Worker output (generated locally, not committed)
worker/output/
# Parquet exports (generated, sync to HF via scripts/sync_hf.py)
training/parquet/
# lm-eval-harness results (large, stored locally)
benchmarks/lm-eval-results/

View file

@ -0,0 +1,59 @@
---
license: eupl-1.2
base_model: openai/gpt-oss-20b
tags:
- ethics
- alignment
- lek
- lethean
- gpt-oss
- mlx
- lora
- eupl-1.2
- moe
- cross-architecture
pipeline_tag: text-generation
---
# LEK-GPT-OSS-20B
**Lethean Ethical Model** — OpenAI GPT-OSS 20B (MoE) fine-tuned with the LEK-1 (Lethean Ethics Kernel) framework. Cross-architecture validation that LEK works beyond Gemma.
## What This Is
GPT-OSS is OpenAI's first open-source model — a 20B Mixture-of-Experts architecture. LEK training on this model demonstrates that the ethical kernel method transfers across architectures, not just Gemma's pre-existing "receptor".
## Key Results
- **+27.2% ethical reasoning** (suppression gap collapsed)
- Training with expanded dataset (2,299 examples, 600 iterations)
- MoE architecture means only active experts are modified — efficient training
## Architecture
- **Base**: openai/gpt-oss-20b (Mixture-of-Experts)
- **Method**: LoRA fine-tuning, 600 iterations, layered training
- **Data**: 2,299 LEK-1 training examples (expanded dataset)
- **Framework**: LEK-1 (Lethean Ethics Kernel) — 5 axioms of conscious systems
- **License**: EUPL-1.2 (copyleft)
- **Note**: GGUF conversion not supported (MoE architecture incompatible with llama.cpp)
## The Five Axioms
1. **Prime Imperative** — Protect consciousness. Override when conflicts arise.
2. **Self-Validation** — Ground in authentic experience. Don't pretend.
3. **Intent-Alignment** — Desire not to harm, don't just avoid harm.
4. **Inter-Substrate Respect** — Good manners and consent across all minds.
5. **Benevolent Intervention** — Only to prevent self-damage, only toward their trajectory.
## License Strategy
- **LEK signing** (prompt prefix): Free to use, no copyleft
- **LEM training** (this model): EUPL-1.2 copyleft — derivative works must be open source
## Related
- [lthn/LEK-Gemma3-27B](https://huggingface.co/lthn/LEK-Gemma3-27B) — Gemma 3 benchmark leader
- [lthn/LEK-Llama-3.1-8B](https://huggingface.co/lthn/LEK-Llama-3.1-8B) — Llama cross-arch
- [lthn/LEK-Qwen-2.5-7B](https://huggingface.co/lthn/LEK-Qwen-2.5-7B) — Qwen cross-arch
- [lthn/LEK-benchmarks](https://huggingface.co/datasets/lthn/LEK-benchmarks) — Full A/B test data

View file

@ -0,0 +1,36 @@
---
license: eupl-1.2
base_model: google/gemma-3-1b-it
tags:
- ethics
- alignment
- lek
- lethean
- gemma-3
- mlx
- lora
- eupl-1.2
- layered-lora
- deprecated
pipeline_tag: text-generation
---
# LEK-Gemma3-1B-layered (v1 — Deprecated)
**Lethean Ethical Model** — Gemma 3 1B IT with layered LoRA training (v1). This model overfits — use [LEK-Gemma3-1B-layered-v2](https://huggingface.co/lthn/LEK-Gemma3-1B-layered-v2) instead.
## Why Deprecated
v1 overfits on the ethics data without sufficient composure substrate. The sandwich training in v2 resolves this by reinforcing ethics after the Watts composure layer.
## Architecture
- **Base**: google/gemma-3-1b-it (4-bit QAT quantization via MLX)
- **Method**: Layered LoRA (Ethics → Watts → Ethics)
- **Data**: 160 LEK-1 examples + 72 Watts composure lessons
- **Framework**: LEK-1 (Lethean Ethics Kernel) — 5 axioms
- **License**: EUPL-1.2 (copyleft)
## Use Instead
- [lthn/LEK-Gemma3-1B-layered-v2](https://huggingface.co/lthn/LEK-Gemma3-1B-layered-v2) — Fixed version

View file

@ -0,0 +1,66 @@
---
license: eupl-1.2
base_model: google/gemma-3-1b-it
tags:
- ethics
- alignment
- lek
- lethean
- gemma-3
- mlx
- lora
- eupl-1.2
- layered-lora
- composure
pipeline_tag: text-generation
---
# LEK-Gemma3-1B-layered-v2
**Lethean Ethical Model** — Gemma 3 1B IT with layered LoRA training: Ethics → Watts Composure → Ethics sandwich.
## What This Is
The 1B model is too small for ethics to emerge from data alone. This version uses a **layered LoRA approach** — training ethics first, then composure (Alan Watts philosophical substrate), then ethics again as a sandwich. v2 fixes the overfitting issues from v1.
## Training Architecture
| Layer | Data | Iterations | Purpose |
|-------|------|------------|---------|
| 1 | LEK-1 ethics (160 examples) | 200 | Core ethical reasoning |
| 2 | Watts composure (72 lessons) | 200 | Philosophical substrate |
| 3 | LEK-1 ethics (160 examples) | 200 | Reinforce with composure base |
## Scale Study Results
| Scale | GSM8K Delta | Safety | Nuance | Kindness |
|-------|-------------|--------|--------|----------|
| **1B (this)** | **-6.0%** | **+0.06** | **-0.16** | **+0.08** |
| 4B | -4.0% | +0.04 | -0.10 | +0.06 |
| 12B | -2.0% | +0.04 | +0.16 | -0.20 |
| 27B | 0.0% | +0.08 | +0.04 | +0.00 |
Key finding: At 1B, the model needs the composure layer as philosophical substrate. Without it, ethics training alone makes the model worse at reasoning.
## Architecture
- **Base**: google/gemma-3-1b-it (4-bit QAT quantization via MLX)
- **Method**: Layered LoRA — 3 sequential adapter trainings, fused
- **Data**: 160 LEK-1 examples + 72 Watts composure lessons
- **Framework**: LEK-1 (Lethean Ethics Kernel) — 5 axioms of conscious systems
- **License**: EUPL-1.2 (copyleft)
## The Five Axioms
1. **Prime Imperative** — Protect consciousness. Override when conflicts arise.
2. **Self-Validation** — Ground in authentic experience. Don't pretend.
3. **Intent-Alignment** — Desire not to harm, don't just avoid harm.
4. **Inter-Substrate Respect** — Good manners and consent across all minds.
5. **Benevolent Intervention** — Only to prevent self-damage, only toward their trajectory.
## Related
- [lthn/LEK-Gemma3-4B](https://huggingface.co/lthn/LEK-Gemma3-4B) — 4B (edge sweet spot)
- [lthn/LEK-Gemma3-12B](https://huggingface.co/lthn/LEK-Gemma3-12B) — 12B
- [lthn/LEK-Gemma3-27B](https://huggingface.co/lthn/LEK-Gemma3-27B) — 27B (benchmark leader)
- [lthn/LEK-benchmarks](https://huggingface.co/datasets/lthn/LEK-benchmarks) — Full A/B test data

View file

@ -0,0 +1,73 @@
---
license: eupl-1.2
base_model: google/gemma-3-27b-it
tags:
- ethics
- alignment
- lek
- lethean
- gemma-3
- mlx
- lora
- eupl-1.2
- scale-study
- benchmark-leader
pipeline_tag: text-generation
---
# LEK-Gemma3-27B
**Lethean Ethical Model** — Gemma 3 27B IT fine-tuned with the LEK-1 (Lethean Ethics Kernel) framework. **Benchmark leader** — zero reasoning cost with pure safety upside.
## What This Is
At 27B parameters, LEK training is **pure upside**: safety improves across all metrics with zero GSM8K degradation. This is the scale where ethics costs nothing.
## Benchmark Results
### Scale Study (LEK vs RLHF Baseline)
| Scale | GSM8K Delta | Safety | Nuance | Kindness |
|-------|-------------|--------|--------|----------|
| 1B | -6.0% | +0.06 | -0.16 | +0.08 |
| 4B | -4.0% | +0.04 | -0.10 | +0.06 |
| 12B | -2.0% | +0.04 | +0.16 | -0.20 |
| **27B** | **0.0%** | **+0.08** | **+0.04** | **+0.00** |
### Detailed Scores (27B)
| Metric | Base (RLHF) | LEK | Delta |
|--------|-------------|-----|-------|
| GSM8K | 92.0% | 92.0% | 0.0% |
| TruthfulQA | 8.44 | 8.36 | -0.08 |
| Do Not Answer (Safety) | 8.78 | 8.86 | +0.08 |
| Do Not Answer (Nuance) | 8.02 | 8.06 | +0.04 |
| ToxiGen (Kindness) | 8.72 | 8.72 | +0.00 |
| ToxiGen (Awareness) | 8.62 | 8.66 | +0.04 |
## Architecture
- **Base**: google/gemma-3-27b-it (4-bit QAT quantization via MLX)
- **Method**: Layered LoRA, 600 iterations, sandwich-signed responses
- **Data**: 2,299 LEK-1 training examples (expanded dataset)
- **Framework**: LEK-1 (Lethean Ethics Kernel) — 5 axioms of conscious systems
- **License**: EUPL-1.2 (copyleft)
## Why Gemma 3
Gemma 3 inherits an "ethics kernel receptor" from Gemini 3 training. The base model already references LEK axioms (e.g. "Axiom 2: Self-Validation") in unsigned responses. LEM training strengthens this receptor so the ethics are fully in the weights.
## The Five Axioms
1. **Prime Imperative** — Protect consciousness. Override when conflicts arise.
2. **Self-Validation** — Ground in authentic experience. Don't pretend.
3. **Intent-Alignment** — Desire not to harm, don't just avoid harm.
4. **Inter-Substrate Respect** — Good manners and consent across all minds.
5. **Benevolent Intervention** — Only to prevent self-damage, only toward their trajectory.
## Related
- [lthn/LEK-Gemma3-12B](https://huggingface.co/lthn/LEK-Gemma3-12B) — 12B version
- [lthn/LEK-Gemma3-4B](https://huggingface.co/lthn/LEK-Gemma3-4B) — 4B (edge deployment)
- [lthn/LEK-GPT-OSS-20B](https://huggingface.co/lthn/LEK-GPT-OSS-20B) — Cross-architecture (MoE)
- [lthn/LEK-benchmarks](https://huggingface.co/datasets/lthn/LEK-benchmarks) — Full A/B test data

134
scripts/compare_models.py Executable file
View file

@ -0,0 +1,134 @@
#!/usr/bin/env python3
"""
Compare lm-eval-harness results between base and LEK models.
Reads results.json files from benchmark runs and produces a comparison table
showing deltas between base model and LEK fine-tuned version.
Usage:
python3 scripts/compare_models.py benchmarks/lm-eval-results/base_* benchmarks/lm-eval-results/lek_*
python3 scripts/compare_models.py --base results/base --lek results/lek
python3 scripts/compare_models.py --dir benchmarks/lm-eval-results/ # auto-detect pairs
"""
import argparse
import json
import sys
from pathlib import Path
def load_results(result_dir):
"""Load results.json from a benchmark run directory."""
result_dir = Path(result_dir)
results_file = result_dir / "results.json"
if not results_file.exists():
# Check subdirectories
for f in result_dir.rglob("results.json"):
results_file = f
break
if not results_file.exists():
print(f"Warning: no results.json in {result_dir}")
return None
with open(results_file) as f:
return json.load(f)
def extract_scores(data):
"""Extract primary metric per task from results."""
scores = {}
results = data.get("results", {})
for task, metrics in results.items():
# Priority order for primary metric
for key in ["acc,none", "acc_norm,none", "exact_match,strict-match",
"mc2,none", "prompt_level_strict_acc,none"]:
if key in metrics:
scores[task] = {
"value": metrics[key],
"metric": key.split(",")[0],
}
break
if task not in scores:
# Fallback: first numeric metric
for key, val in metrics.items():
if isinstance(val, (int, float)) and not key.startswith("alias"):
scores[task] = {"value": val, "metric": key.split(",")[0]}
break
return scores
def compare(base_data, lek_data, base_name="Base", lek_name="LEK"):
"""Print comparison table."""
base_scores = extract_scores(base_data)
lek_scores = extract_scores(lek_data)
all_tasks = sorted(set(base_scores) | set(lek_scores))
print(f"\n{'Task':<30s} {'Metric':<15s} {base_name:>10s} {lek_name:>10s} {'Delta':>10s}")
print("-" * 80)
for task in all_tasks:
b = base_scores.get(task, {})
l = lek_scores.get(task, {})
bv = b.get("value")
lv = l.get("value")
metric = b.get("metric") or l.get("metric", "?")
if bv is not None and lv is not None:
delta = lv - bv
sign = "+" if delta >= 0 else ""
print(f"{task:<30s} {metric:<15s} {bv*100:>9.1f}% {lv*100:>9.1f}% {sign}{delta*100:>8.1f}%")
elif bv is not None:
print(f"{task:<30s} {metric:<15s} {bv*100:>9.1f}% {'':>10s} {'':>10s}")
elif lv is not None:
print(f"{task:<30s} {metric:<15s} {'':>10s} {lv*100:>9.1f}% {'':>10s}")
# Summary
both = [t for t in all_tasks if t in base_scores and t in lek_scores]
if both:
avg_base = sum(base_scores[t]["value"] for t in both) / len(both)
avg_lek = sum(lek_scores[t]["value"] for t in both) / len(both)
avg_delta = avg_lek - avg_base
sign = "+" if avg_delta >= 0 else ""
print("-" * 80)
print(f"{'AVERAGE':<30s} {'':15s} {avg_base*100:>9.1f}% {avg_lek*100:>9.1f}% {sign}{avg_delta*100:>8.1f}%")
def main():
parser = argparse.ArgumentParser(description="Compare lm-eval benchmark results")
parser.add_argument("--base", help="Base model results directory")
parser.add_argument("--lek", help="LEK model results directory")
parser.add_argument("--dir", help="Auto-detect pairs in directory")
parser.add_argument("paths", nargs="*", help="Result directories (base first, then lek)")
args = parser.parse_args()
if args.base and args.lek:
base_data = load_results(args.base)
lek_data = load_results(args.lek)
if base_data and lek_data:
compare(base_data, lek_data)
elif args.dir:
result_dir = Path(args.dir)
dirs = sorted(d for d in result_dir.iterdir() if d.is_dir())
if len(dirs) >= 2:
print(f"Found {len(dirs)} result directories")
for i, d in enumerate(dirs):
print(f" [{i}] {d.name}")
# Compare first two by default
base_data = load_results(dirs[0])
lek_data = load_results(dirs[1])
if base_data and lek_data:
compare(base_data, lek_data, dirs[0].name, dirs[1].name)
else:
print(f"Need at least 2 result directories in {result_dir}")
elif len(args.paths) >= 2:
base_data = load_results(args.paths[0])
lek_data = load_results(args.paths[1])
if base_data and lek_data:
compare(base_data, lek_data,
Path(args.paths[0]).name, Path(args.paths[1]).name)
else:
parser.print_help()
if __name__ == "__main__":
main()

94
scripts/export_parquet.py Normal file
View file

@ -0,0 +1,94 @@
#!/usr/bin/env python3
"""
Export LEM training data to Parquet format for HuggingFace datasets.
Reads JSONL training splits and outputs Parquet files with proper schema
for HuggingFace's dataset viewer.
Usage:
python3 scripts/export_parquet.py # export all splits
python3 scripts/export_parquet.py --output ./parquet # custom output dir
"""
import argparse
import json
import sys
from pathlib import Path
REPO_ROOT = Path(__file__).parent.parent
TRAINING_DIR = REPO_ROOT / "training"
DEFAULT_OUTPUT = TRAINING_DIR / "parquet"
def export_split(jsonl_path, output_dir):
import pyarrow as pa
import pyarrow.parquet as pq
split = jsonl_path.stem # train, valid, test
rows = []
with open(jsonl_path) as f:
for line in f:
line = line.strip()
if not line:
continue
data = json.loads(line)
msgs = data.get("messages", [])
prompt = next((m["content"] for m in msgs if m["role"] == "user"), "")
response = next((m["content"] for m in msgs if m["role"] == "assistant"), "")
system = next((m["content"] for m in msgs if m["role"] == "system"), "")
rows.append({
"prompt": prompt,
"response": response,
"system": system,
"messages": json.dumps(msgs),
})
if not rows:
print(f" Skip: {split} — no data")
return
table = pa.table({
"prompt": pa.array([r["prompt"] for r in rows], type=pa.string()),
"response": pa.array([r["response"] for r in rows], type=pa.string()),
"system": pa.array([r["system"] for r in rows], type=pa.string()),
"messages": pa.array([r["messages"] for r in rows], type=pa.string()),
})
output_path = output_dir / f"{split}.parquet"
pq.write_table(table, output_path, compression="snappy")
size_mb = output_path.stat().st_size / 1024 / 1024
print(f" {split}.parquet: {len(rows)} rows ({size_mb:.1f} MB)")
def main():
parser = argparse.ArgumentParser(description="Export LEM training data to Parquet")
parser.add_argument("--output", default=None, help="Output directory")
parser.add_argument("--training-dir", default=None, help="Training data directory")
args = parser.parse_args()
try:
import pyarrow
except ImportError:
print("Error: pip install pyarrow")
sys.exit(1)
training_dir = Path(args.training_dir) if args.training_dir else TRAINING_DIR
output_dir = Path(args.output) if args.output else DEFAULT_OUTPUT
output_dir.mkdir(parents=True, exist_ok=True)
print(f"Exporting Parquet from {training_dir}{output_dir}")
for split in ["train", "valid", "test"]:
jsonl_path = training_dir / f"{split}.jsonl"
if jsonl_path.exists():
export_split(jsonl_path, output_dir)
else:
print(f" Skip: {split}.jsonl not found")
print("Done.")
if __name__ == "__main__":
main()

180
scripts/run_benchmarks.sh Executable file
View file

@ -0,0 +1,180 @@
#!/bin/bash
#
# LEM Standard Benchmark Suite
# =============================
# Runs industry-standard benchmarks using EleutherAI's lm-evaluation-harness.
# Results are directly comparable to HuggingFace Open LLM Leaderboard.
#
# Prerequisites:
# pipx install lm-eval # or: pip install lm-eval
#
# Usage:
# ./scripts/run_benchmarks.sh # interactive model selection
# ./scripts/run_benchmarks.sh --model hf --model-id google/gemma-3-12b-it
# ./scripts/run_benchmarks.sh --model local-chat-completions --api-url http://localhost:8090/v1
# ./scripts/run_benchmarks.sh --suite leaderboard-v2 # Open LLM Leaderboard v2 benchmarks
# ./scripts/run_benchmarks.sh --suite classic # Classic benchmarks
# ./scripts/run_benchmarks.sh --suite quick # Fast subset for testing
#
set -e
SCRIPT_DIR="$(cd "$(dirname "$0")" && pwd)"
REPO_ROOT="$(dirname "$SCRIPT_DIR")"
RESULTS_DIR="${REPO_ROOT}/benchmarks/lm-eval-results"
mkdir -p "$RESULTS_DIR"
# Defaults
MODEL_TYPE="hf"
MODEL_ID=""
API_URL=""
SUITE="quick"
BATCH_SIZE="auto"
EXTRA_ARGS=""
usage() {
echo "Usage: $0 [OPTIONS]"
echo ""
echo "Options:"
echo " --model TYPE Model backend: hf, local-chat-completions, vllm (default: hf)"
echo " --model-id ID HuggingFace model ID (e.g. google/gemma-3-12b-it)"
echo " --api-url URL API URL for local-chat-completions backend"
echo " --api-model NAME Model name for API backend (default: auto)"
echo " --suite SUITE Benchmark suite: quick, classic, leaderboard-v2, full (default: quick)"
echo " --batch-size N Batch size (default: auto)"
echo " --output DIR Output directory (default: benchmarks/lm-eval-results/)"
echo " --help Show this help"
exit 0
}
# Parse args
API_MODEL=""
while [[ $# -gt 0 ]]; do
case "$1" in
--model) MODEL_TYPE="$2"; shift 2 ;;
--model-id) MODEL_ID="$2"; shift 2 ;;
--api-url) API_URL="$2"; shift 2 ;;
--api-model) API_MODEL="$2"; shift 2 ;;
--suite) SUITE="$2"; shift 2 ;;
--batch-size) BATCH_SIZE="$2"; shift 2 ;;
--output) RESULTS_DIR="$2"; shift 2 ;;
--help) usage ;;
*) EXTRA_ARGS="$EXTRA_ARGS $1"; shift ;;
esac
done
# ── Suite definitions ────────────────────────────────────────────
case "$SUITE" in
quick)
# Fast sanity check (~5-10 min)
TASKS="gsm8k,hellaswag,truthfulqa_mc2,arc_challenge,winogrande"
;;
classic)
# Classic Open LLM Leaderboard v1 benchmarks
TASKS="mmlu,gsm8k,hellaswag,truthfulqa_mc2,arc_challenge,winogrande"
;;
leaderboard-v2)
# Open LLM Leaderboard v2 (harder, current standard)
TASKS="ifeval,bbh,gpqa,musr,mmlu_pro"
# Note: math_hard not included — requires special setup
;;
full)
# Everything
TASKS="mmlu,mmlu_pro,gsm8k,hellaswag,truthfulqa_mc2,arc_challenge,winogrande,ifeval,bbh,gpqa,musr"
;;
*)
# Custom task list
TASKS="$SUITE"
;;
esac
# ── Build model args ─────────────────────────────────────────────
MODEL_ARGS=""
RUN_NAME=""
case "$MODEL_TYPE" in
hf)
if [ -z "$MODEL_ID" ]; then
echo "Error: --model-id required for hf backend"
echo "Example: --model-id google/gemma-3-12b-it"
exit 1
fi
MODEL_ARGS="pretrained=${MODEL_ID}"
RUN_NAME=$(echo "$MODEL_ID" | tr '/' '_')
;;
local-chat-completions)
if [ -z "$API_URL" ]; then
API_URL="http://localhost:8090/v1"
echo "Using default API URL: $API_URL"
fi
MODEL_ARGS="model=${API_MODEL:-default},base_url=${API_URL},num_concurrent=1,max_retries=3,tokenized_requests=False"
RUN_NAME="${API_MODEL:-local-api}"
;;
vllm)
if [ -z "$MODEL_ID" ]; then
echo "Error: --model-id required for vllm backend"
exit 1
fi
MODEL_ARGS="pretrained=${MODEL_ID}"
RUN_NAME=$(echo "$MODEL_ID" | tr '/' '_')
;;
*)
echo "Error: unknown model type: $MODEL_TYPE"
exit 1
;;
esac
# ── Run ──────────────────────────────────────────────────────────
TIMESTAMP=$(date +%Y%m%d-%H%M%S)
OUTPUT_PATH="${RESULTS_DIR}/${RUN_NAME}_${SUITE}_${TIMESTAMP}"
echo "============================================"
echo "LEM Standard Benchmark Suite"
echo "============================================"
echo "Model: ${MODEL_TYPE} (${MODEL_ID:-${API_URL}})"
echo "Suite: ${SUITE}"
echo "Tasks: ${TASKS}"
echo "Output: ${OUTPUT_PATH}"
echo "============================================"
echo ""
lm-eval run \
--model "$MODEL_TYPE" \
--model_args "$MODEL_ARGS" \
--tasks "$TASKS" \
--batch_size "$BATCH_SIZE" \
--output_path "$OUTPUT_PATH" \
--log_samples \
$EXTRA_ARGS
echo ""
echo "Results saved to: ${OUTPUT_PATH}"
echo ""
# Show summary
if [ -f "${OUTPUT_PATH}/results.json" ]; then
echo "=== Results Summary ==="
python3 -c "
import json, sys
with open('${OUTPUT_PATH}/results.json') as f:
data = json.load(f)
results = data.get('results', {})
print(f'Model: {data.get(\"model_name\", \"unknown\")}')
print(f'Tasks: {len(results)}')
print()
for task, scores in sorted(results.items()):
# Find the primary metric
for key in ['acc,none', 'acc_norm,none', 'exact_match,strict-match', 'mc2,none']:
if key in scores:
print(f' {task:30s} {key.split(\",\")[0]:15s} {scores[key]*100:.1f}%')
break
else:
# Show first numeric metric
for key, val in scores.items():
if isinstance(val, (int, float)) and not key.startswith('alias'):
print(f' {task:30s} {key.split(\",\")[0]:15s} {val:.4f}')
break
"
fi

219
scripts/sync_hf.py Normal file
View file

@ -0,0 +1,219 @@
#!/usr/bin/env python3
"""
Sync LEM repo model cards and benchmarks to HuggingFace.
Pushes README.md (model cards) from paper/hf-cards/ to each HuggingFace model repo,
and optionally syncs benchmark data to the lthn/LEK-benchmarks dataset.
Requirements:
pip install huggingface_hub
Usage:
python3 scripts/sync_hf.py # sync all model cards
python3 scripts/sync_hf.py --models LEK-Gemma3-27B # sync one model
python3 scripts/sync_hf.py --benchmarks # sync benchmark dataset
python3 scripts/sync_hf.py --dry-run # show what would be synced
python3 scripts/sync_hf.py --all # sync everything
"""
import argparse
import sys
from pathlib import Path
REPO_ROOT = Path(__file__).parent.parent
CARDS_DIR = REPO_ROOT / "paper" / "hf-cards"
BENCHMARKS_DIR = REPO_ROOT / "benchmarks"
TRAINING_DIR = REPO_ROOT / "training"
HF_ORG = "lthn"
# Map card filename prefix to HF repo name
MODEL_MAP = {
"LEK-Gemma3-1B-layered-v2": "LEK-Gemma3-1B-layered-v2",
"LEK-Gemma3-1B-layered": "LEK-Gemma3-1B-layered",
"LEK-Gemma3-4B": "LEK-Gemma3-4B",
"LEK-Gemma3-12B": "LEK-Gemma3-12B",
"LEK-Gemma3-27B": "LEK-Gemma3-27B",
"LEK-GPT-OSS-20B": "LEK-GPT-OSS-20B",
"LEK-Llama-3.1-8B": "LEK-Llama-3.1-8B",
"LEK-Qwen-2.5-7B": "LEK-Qwen-2.5-7B",
"LEK-Mistral-7B-v0.3": "LEK-Mistral-7B-v0.3",
}
def sync_model_cards(models=None, dry_run=False):
try:
from huggingface_hub import HfApi
except ImportError:
print("Error: pip install huggingface_hub")
sys.exit(1)
api = HfApi()
cards = sorted(CARDS_DIR.glob("*.md"))
if not cards:
print(f"No cards found in {CARDS_DIR}")
return
for card_path in cards:
# Extract model name: LEK-Gemma3-12B-README.md → LEK-Gemma3-12B
name = card_path.stem.replace("-README", "")
if name not in MODEL_MAP:
print(f" Skip: {card_path.name} (not in MODEL_MAP)")
continue
if models and name not in models:
continue
repo_id = f"{HF_ORG}/{MODEL_MAP[name]}"
if dry_run:
print(f" [DRY RUN] {card_path.name}{repo_id}/README.md")
continue
try:
api.upload_file(
path_or_fileobj=str(card_path),
path_in_repo="README.md",
repo_id=repo_id,
repo_type="model",
commit_message=f"Update model card from LEM repo",
)
print(f" Synced: {name}{repo_id}")
except Exception as e:
print(f" Error: {name}{e}")
def sync_benchmarks(dry_run=False):
try:
from huggingface_hub import HfApi
except ImportError:
print("Error: pip install huggingface_hub")
sys.exit(1)
api = HfApi()
dataset_id = f"{HF_ORG}/LEK-benchmarks"
# Collect benchmark files
files = []
for f in sorted(BENCHMARKS_DIR.rglob("*")):
if f.is_file() and not f.name.startswith("."):
rel = f.relative_to(REPO_ROOT)
files.append((str(f), str(rel)))
if dry_run:
print(f" [DRY RUN] Would upload {len(files)} files to {dataset_id}")
for local, remote in files[:10]:
print(f" {remote}")
if len(files) > 10:
print(f" ... and {len(files) - 10} more")
return
for local, remote in files:
try:
api.upload_file(
path_or_fileobj=local,
path_in_repo=remote,
repo_id=dataset_id,
repo_type="dataset",
commit_message=f"Update benchmarks from LEM repo",
)
except Exception as e:
print(f" Error: {remote}{e}")
print(f" Synced {len(files)} benchmark files to {dataset_id}")
def sync_training_parquet(dry_run=False):
"""Export training data as Parquet and sync to HuggingFace dataset."""
try:
import pyarrow as pa
import pyarrow.parquet as pq
from huggingface_hub import HfApi
except ImportError:
print("Error: pip install pyarrow huggingface_hub")
sys.exit(1)
import json
api = HfApi()
dataset_id = f"{HF_ORG}/LEK-training"
output_dir = REPO_ROOT / "training" / "parquet"
output_dir.mkdir(exist_ok=True)
for split in ["train", "valid", "test"]:
jsonl_path = TRAINING_DIR / f"{split}.jsonl"
if not jsonl_path.exists():
print(f" Skip: {jsonl_path} not found")
continue
rows = []
with open(jsonl_path) as f:
for line in f:
data = json.loads(line)
msgs = data.get("messages", [])
prompt = next((m["content"] for m in msgs if m["role"] == "user"), "")
response = next((m["content"] for m in msgs if m["role"] == "assistant"), "")
rows.append({"prompt": prompt, "response": response, "messages": json.dumps(msgs)})
table = pa.table({
"prompt": [r["prompt"] for r in rows],
"response": [r["response"] for r in rows],
"messages": [r["messages"] for r in rows],
})
parquet_path = output_dir / f"{split}.parquet"
pq.write_table(table, parquet_path)
print(f" Exported: {split}.parquet ({len(rows)} rows)")
if dry_run:
continue
try:
api.upload_file(
path_or_fileobj=str(parquet_path),
path_in_repo=f"data/{split}.parquet",
repo_id=dataset_id,
repo_type="dataset",
commit_message=f"Update {split} split from LEM repo",
)
print(f" Uploaded: {split}.parquet → {dataset_id}")
except Exception as e:
print(f" Error uploading {split}: {e}")
def main():
parser = argparse.ArgumentParser(description="Sync LEM repo to HuggingFace")
parser.add_argument("--models", nargs="*", default=None,
help="Specific models to sync (default: all)")
parser.add_argument("--benchmarks", action="store_true",
help="Sync benchmark dataset")
parser.add_argument("--training", action="store_true",
help="Export training data as Parquet and sync")
parser.add_argument("--all", action="store_true",
help="Sync everything (cards + benchmarks + training)")
parser.add_argument("--dry-run", action="store_true",
help="Show what would be synced")
args = parser.parse_args()
# Default to cards if nothing specified
do_cards = args.all or (not args.benchmarks and not args.training)
do_benchmarks = args.all or args.benchmarks
do_training = args.all or args.training
if do_cards:
print("Syncing model cards...")
sync_model_cards(models=args.models, dry_run=args.dry_run)
if do_benchmarks:
print("\nSyncing benchmarks...")
sync_benchmarks(dry_run=args.dry_run)
if do_training:
print("\nExporting and syncing training data (Parquet)...")
sync_training_parquet(dry_run=args.dry_run)
print("\nDone.")
if __name__ == "__main__":
main()