1
0
Fork 0
forked from lthn/blockchain
blockchain/src/currency_core/difficulty.cpp

342 lines
12 KiB
C++
Raw Normal View History

2018-12-27 18:50:45 +03:00
// Copyright (c) 2014-2018 Zano Project
// Copyright (c) 2014-2018 The Louisdor Project
2025-09-30 16:48:13 +01:00
// Copyright (c) 2012-2013 The Boolberry developers
// Copyright (c) 2017-2025 Lethean (https://lt.hn)
//
// Licensed under the European Union Public Licence (EUPL) version 1.2.
// You may obtain a copy of the licence at:
//
// https://joinup.ec.europa.eu/software/page/eupl/licence-eupl
//
// The EUPL is a copyleft licence that is compatible with the MIT/X11
// licence used by the original projects; the MIT terms are therefore
// considered “grandfathered” under the EUPL for this code.
//
// SPDXLicenseIdentifier: EUPL-1.2
//
2018-12-27 18:50:45 +03:00
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <vector>
#include "misc_log_ex.h"
#include "common/int-util.h"
#include "crypto/hash.h"
2025-09-30 16:48:13 +01:00
#include "config/currency_config.h"
2018-12-27 18:50:45 +03:00
#include "difficulty.h"
#include "profile_tools.h"
namespace currency {
using std::size_t;
using std::uint64_t;
using std::vector;
2020-01-27 22:42:18 +01:00
//#if defined(_MSC_VER)
//#include <windows.h>
//#include <winnt.h>
2018-12-27 18:50:45 +03:00
static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
boost::multiprecision::uint128_t res = boost::multiprecision::uint128_t(a) * b;
low = (res & 0xffffffffffffffffLL).convert_to<uint64_t>();
high = (res >> 64).convert_to<uint64_t>();
//low = _umul128(a, b, &high);
//low = UnsignedMultiply128(a, b, &high);
}
2020-01-27 22:42:18 +01:00
/* #else
2018-12-27 18:50:45 +03:00
static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
typedef unsigned __int128 uint128_t;
uint128_t res = (uint128_t)a * (uint128_t)b;
low = (uint64_t)res;
high = (uint64_t)(res >> 64);
2018-12-27 18:50:45 +03:00
}
2020-01-27 22:42:18 +01:00
#endif */
2018-12-27 18:50:45 +03:00
static inline bool cadd(uint64_t a, uint64_t b) {
return a + b < a;
}
static inline bool cadc(uint64_t a, uint64_t b, bool c) {
return a + b < a || (c && a + b == (uint64_t)-1);
2018-12-27 18:50:45 +03:00
}
2018-12-27 18:50:45 +03:00
#if defined(_MSC_VER)
#ifdef max
#undef max
#endif
#endif
const wide_difficulty_type max64bit(std::numeric_limits<std::uint64_t>::max());
const boost::multiprecision::uint256_t max128bit(std::numeric_limits<boost::multiprecision::uint128_t>::max());
const boost::multiprecision::uint512_t max256bit(std::numeric_limits<boost::multiprecision::uint256_t>::max());
bool check_hash(const crypto::hash &hash_, wide_difficulty_type difficulty)
2018-12-27 18:50:45 +03:00
{
//revert byte order
crypto::hash h = {};
for (size_t i = 0; i != sizeof(h); i++)
{
*(((char*)&h) + (sizeof(h) - (i + 1))) = *(((char*)&hash_) + i);
2018-12-27 18:50:45 +03:00
}
PROFILE_FUNC("check_hash");
if (difficulty < max64bit)
{ // if can convert to small difficulty - do it
std::uint64_t dl = difficulty.convert_to<std::uint64_t>();
uint64_t low, high, top, cur;
// First check the highest word, this will most likely fail for a random hash.
mul(swap64le(((const uint64_t *)&h)[3]), dl, top, high);
if (high != 0)
2018-12-27 18:50:45 +03:00
return false;
mul(swap64le(((const uint64_t *)&h)[0]), dl, low, cur);
mul(swap64le(((const uint64_t *)&h)[1]), dl, low, high);
2018-12-27 18:50:45 +03:00
bool carry = cadd(cur, low);
cur = high;
mul(swap64le(((const uint64_t *)&h)[2]), dl, low, high);
2018-12-27 18:50:45 +03:00
carry = cadc(cur, low, carry);
carry = cadc(high, top, carry);
return !carry;
}
// fast check
if (((const uint64_t *)&h)[3] > 0)
2018-12-27 18:50:45 +03:00
return false;
// usual slow check
boost::multiprecision::uint512_t hashVal = 0;
2019-03-29 05:43:23 +03:00
for(int i = 0; i < 4; i++)
{
hashVal <<= 64;
hashVal |= swap64le(((const uint64_t *) &h)[3-i]);
2018-12-27 18:50:45 +03:00
}
2019-03-29 05:43:23 +03:00
return (hashVal * difficulty <= max256bit);
2018-12-27 18:50:45 +03:00
}
uint64_t difficulty_to_boundary(wide_difficulty_type difficulty)
{
boost::multiprecision::uint256_t nominal_hash = std::numeric_limits<boost::multiprecision::uint256_t>::max();
nominal_hash = nominal_hash / difficulty;
uint64_t res = (nominal_hash >> 192).convert_to<std::uint64_t>();
return res;
}
void difficulty_to_boundary_long(wide_difficulty_type difficulty, crypto::hash& result)
2018-12-27 18:50:45 +03:00
{
boost::multiprecision::uint256_t nominal_hash = std::numeric_limits<boost::multiprecision::uint256_t>::max();
nominal_hash = nominal_hash / difficulty;
static_assert(sizeof(uint64_t) * 4 == sizeof(result), "!");
for (size_t i = 0; i < 4; ++i)
{
(reinterpret_cast<uint64_t*>(&result))[i] = nominal_hash.convert_to<uint64_t>();
nominal_hash >>= 64;
}
}
void get_cut_location_from_len(size_t length, size_t& cut_begin, size_t& cut_end, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST)
{
if (length <= REDEF_DIFFICULTY_WINDOW)
{
cut_begin = 0;
cut_end = length;
}
else
{
cut_begin = REDEF_DIFFICULTY_WINDOW - REDEF_DIFFICULTY_CUT_LAST + 1;
cut_end = cut_begin + (REDEF_DIFFICULTY_WINDOW - (REDEF_DIFFICULTY_CUT_OLD + REDEF_DIFFICULTY_CUT_LAST));
}
}
void get_adjustment_zone(size_t length, size_t& cut_begin, size_t& cut_end, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST)
2019-02-06 13:50:51 +03:00
{
2018-12-27 18:50:45 +03:00
//cutoff DIFFICULTY_LAG
if (length <= REDEF_DIFFICULTY_WINDOW - (REDEF_DIFFICULTY_CUT_OLD + REDEF_DIFFICULTY_CUT_LAST))
{
cut_begin = 0;
cut_end = length;
}
else
{
cut_begin = REDEF_DIFFICULTY_CUT_LAST;
cut_end = cut_begin + (REDEF_DIFFICULTY_WINDOW - (REDEF_DIFFICULTY_CUT_OLD + REDEF_DIFFICULTY_CUT_LAST));
if (cut_end > length)
cut_end = length;
}
CHECK_AND_ASSERT_THROW_MES(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length, "validation in next_difficulty is failed");
}
wide_difficulty_type get_adjustment_for_zone(vector<uint64_t>& timestamps_sorted, vector<wide_difficulty_type>& cumulative_difficulties, size_t target_seconds, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST)
{
size_t length = timestamps_sorted.size();
size_t cut_begin = 0;
size_t cut_end = 0;
get_adjustment_zone(length, cut_begin, cut_end, REDEF_DIFFICULTY_WINDOW, REDEF_DIFFICULTY_CUT_OLD, REDEF_DIFFICULTY_CUT_LAST);
uint64_t time_span = timestamps_sorted[cut_begin] - timestamps_sorted[cut_end - 1];
if (time_span == 0)
{
time_span = 1;
}
wide_difficulty_type total_work = cumulative_difficulties[cut_begin] - cumulative_difficulties[cut_end - 1];
boost::multiprecision::uint256_t res = (boost::multiprecision::uint256_t(total_work) * target_seconds + time_span - 1) / time_span;
if (res > max128bit)
return 0; // to behave like previous implementation, may be better return max128bit?
return res.convert_to<wide_difficulty_type>();
}
wide_difficulty_type next_difficulty_1(vector<uint64_t>& timestamps, vector<wide_difficulty_type>& cumulative_difficulties, size_t target_seconds, const wide_difficulty_type& difficulty_starter)
{
2019-05-21 19:05:09 +02:00
// timestamps - first is latest, back - is oldest timestamps
if (timestamps.size() > DIFFICULTY_WINDOW)
2018-12-27 18:50:45 +03:00
{
timestamps.resize(DIFFICULTY_WINDOW);
cumulative_difficulties.resize(DIFFICULTY_WINDOW);
}
size_t length = timestamps.size();
CHECK_AND_ASSERT_MES(length == cumulative_difficulties.size(), 0, "Check \"length == cumulative_difficulties.size()\" failed");
if (length <= 1)
{
return difficulty_starter;
2018-12-27 18:50:45 +03:00
}
static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small");
2018-12-27 18:50:45 +03:00
CHECK_AND_ASSERT_MES(length <= DIFFICULTY_WINDOW, 0, "length <= DIFFICULTY_WINDOW check failed, length=" << length);
2018-12-27 18:50:45 +03:00
sort(timestamps.begin(), timestamps.end(), std::greater<uint64_t>());
2018-12-27 18:50:45 +03:00
static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large");
wide_difficulty_type dif_slow = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW, DIFFICULTY_CUT/2, DIFFICULTY_CUT/2);
wide_difficulty_type dif_medium = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW/3, DIFFICULTY_CUT / 8, DIFFICULTY_CUT / 12);
wide_difficulty_type dif_fast = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW/18, DIFFICULTY_CUT / 10, 2);
uint64_t devider = 1;
wide_difficulty_type summ = dif_slow;
if (dif_medium != 0)
{
summ += dif_medium;
++devider;
2018-12-27 18:50:45 +03:00
}
if (dif_fast != 0)
{
summ += dif_fast;
++devider;
2018-12-27 18:50:45 +03:00
}
return summ / devider;
2018-12-27 18:50:45 +03:00
}
2019-07-19 18:39:00 +02:00
wide_difficulty_type next_difficulty_2(vector<uint64_t>& timestamps, vector<wide_difficulty_type>& cumulative_difficulties, size_t target_seconds, const wide_difficulty_type& difficulty_starter)
2019-07-19 18:39:00 +02:00
{
// timestamps - first is latest, back - is oldest timestamps
if (timestamps.size() > DIFFICULTY_WINDOW)
{
timestamps.resize(DIFFICULTY_WINDOW);
cumulative_difficulties.resize(DIFFICULTY_WINDOW);
}
size_t length = timestamps.size();
CHECK_AND_ASSERT_MES(length == cumulative_difficulties.size(), 0, "Check \"length == cumulative_difficulties.size()\" failed");
if (length <= 1)
{
return difficulty_starter;
2019-07-19 18:39:00 +02:00
}
static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small");
CHECK_AND_ASSERT_MES(length <= DIFFICULTY_WINDOW, 0, "length <= DIFFICULTY_WINDOW check failed, length=" << length);
sort(timestamps.begin(), timestamps.end(), std::greater<uint64_t>());
static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large");
wide_difficulty_type dif_slow = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW, DIFFICULTY_CUT / 2, DIFFICULTY_CUT / 2);
wide_difficulty_type dif_medium = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW / 3, DIFFICULTY_CUT / 8, DIFFICULTY_CUT / 12);
uint64_t devider = 1;
wide_difficulty_type summ = dif_slow;
if (dif_medium != 0)
{
summ += dif_medium;
++devider;
}
return summ / devider;
}
//--------------------------------------------------------------
// LWMA-1 difficulty algorithm (zawy12)
// Linear Weighted Moving Average — adjusts every block with a
// ~60-block window. Battle-tested in Monero against ASICs and
// botnets. Much faster convergence than the 720-block Zano algo.
//--------------------------------------------------------------
wide_difficulty_type next_difficulty_lwma(vector<uint64_t>& timestamps, vector<wide_difficulty_type>& cumulative_difficulties, size_t target_seconds, const wide_difficulty_type& difficulty_starter)
{
const int64_t T = static_cast<int64_t>(target_seconds);
const size_t N = 60; // LWMA window size (solve times)
size_t length = timestamps.size();
CHECK_AND_ASSERT_MES(length == cumulative_difficulties.size(), difficulty_starter,
"LWMA: timestamps/difficulties size mismatch");
if (length <= 1)
return difficulty_starter;
// We need at most N+1 entries (giving N solve times)
if (length > N + 1)
{
timestamps.resize(N + 1);
cumulative_difficulties.resize(N + 1);
length = N + 1;
}
// Input arrives newest-first; LWMA needs oldest-first
std::reverse(timestamps.begin(), timestamps.end());
std::reverse(cumulative_difficulties.begin(), cumulative_difficulties.end());
// Now: [0]=oldest … [length-1]=newest
size_t n = length - 1; // number of solve-time intervals
int64_t weighted_solvetimes = 0;
for (size_t i = 1; i <= n; i++)
{
int64_t st = static_cast<int64_t>(timestamps[i])
- static_cast<int64_t>(timestamps[i - 1]);
// Clamp to [-6T, 6T] to limit timestamp-manipulation impact
if (st < -(6 * T)) st = -(6 * T);
if (st > (6 * T)) st = (6 * T);
weighted_solvetimes += st * static_cast<int64_t>(i);
}
// Guard against zero / negative (would be pathological timestamps)
if (weighted_solvetimes <= 0)
weighted_solvetimes = 1;
wide_difficulty_type total_work = cumulative_difficulties[n] - cumulative_difficulties[0];
// LWMA-1 formula:
// next_D = total_work * T * (n+1) / (2 * weighted_solvetimes * n)
//
// The divisor (n+1)/(2*n) normalises the linear weights 1..n
// whose sum is n*(n+1)/2.
boost::multiprecision::uint256_t next_d =
(boost::multiprecision::uint256_t(total_work) * T * (n + 1))
/ (boost::multiprecision::uint256_t(2) * weighted_solvetimes * n);
if (next_d < 1)
next_d = 1;
if (next_d > max128bit)
return difficulty_starter;
return next_d.convert_to<wide_difficulty_type>();
}
2018-12-27 18:50:45 +03:00
}