forked from lthn/blockchain
Replace ProgPowZ with RandomX for ASIC-resistant proof-of-work. The full dataset is initialized multi-threaded at startup with the key "LetheanRandomXv1". Thread-local VMs are created on demand. Switch difficulty algorithm from Zano's 720-block window to LWMA-1 (zawy12) with a 60-block window for much faster convergence after hashrate changes. Target block time set to 10s for PoW. Add standard stratum mining.* protocol handlers (subscribe, authorize, submit, extranonce.subscribe) alongside existing EthProxy eth_* handlers, with automatic protocol detection and mining.notify translation for XMRig-based miners. Generate fresh Lethean genesis block and premine wallet. Replace all remaining hardcoded Zano addresses in tests with runtime-generated keys to avoid prefix mismatches. Link RandomX library across all build targets. Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
341 lines
12 KiB
C++
341 lines
12 KiB
C++
// Copyright (c) 2014-2018 Zano Project
|
||
// Copyright (c) 2014-2018 The Louisdor Project
|
||
// Copyright (c) 2012-2013 The Boolberry developers
|
||
// Copyright (c) 2017-2025 Lethean (https://lt.hn)
|
||
//
|
||
// Licensed under the European Union Public Licence (EUPL) version 1.2.
|
||
// You may obtain a copy of the licence at:
|
||
//
|
||
// https://joinup.ec.europa.eu/software/page/eupl/licence-eupl
|
||
//
|
||
// The EUPL is a copyleft licence that is compatible with the MIT/X11
|
||
// licence used by the original projects; the MIT terms are therefore
|
||
// considered “grandfathered” under the EUPL for this code.
|
||
//
|
||
// SPDX‑License‑Identifier: EUPL-1.2
|
||
//
|
||
|
||
#include <algorithm>
|
||
#include <cassert>
|
||
#include <cstddef>
|
||
#include <cstdint>
|
||
#include <vector>
|
||
|
||
#include "misc_log_ex.h"
|
||
|
||
#include "common/int-util.h"
|
||
#include "crypto/hash.h"
|
||
#include "config/currency_config.h"
|
||
#include "difficulty.h"
|
||
#include "profile_tools.h"
|
||
|
||
namespace currency {
|
||
|
||
using std::size_t;
|
||
using std::uint64_t;
|
||
using std::vector;
|
||
|
||
//#if defined(_MSC_VER)
|
||
//#include <windows.h>
|
||
//#include <winnt.h>
|
||
|
||
static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
|
||
boost::multiprecision::uint128_t res = boost::multiprecision::uint128_t(a) * b;
|
||
low = (res & 0xffffffffffffffffLL).convert_to<uint64_t>();
|
||
high = (res >> 64).convert_to<uint64_t>();
|
||
//low = _umul128(a, b, &high);
|
||
//low = UnsignedMultiply128(a, b, &high);
|
||
}
|
||
|
||
/* #else
|
||
|
||
static inline void mul(uint64_t a, uint64_t b, uint64_t &low, uint64_t &high) {
|
||
typedef unsigned __int128 uint128_t;
|
||
uint128_t res = (uint128_t)a * (uint128_t)b;
|
||
low = (uint64_t)res;
|
||
high = (uint64_t)(res >> 64);
|
||
}
|
||
|
||
#endif */
|
||
|
||
static inline bool cadd(uint64_t a, uint64_t b) {
|
||
return a + b < a;
|
||
}
|
||
|
||
static inline bool cadc(uint64_t a, uint64_t b, bool c) {
|
||
return a + b < a || (c && a + b == (uint64_t)-1);
|
||
}
|
||
|
||
|
||
#if defined(_MSC_VER)
|
||
#ifdef max
|
||
#undef max
|
||
#endif
|
||
#endif
|
||
|
||
const wide_difficulty_type max64bit(std::numeric_limits<std::uint64_t>::max());
|
||
const boost::multiprecision::uint256_t max128bit(std::numeric_limits<boost::multiprecision::uint128_t>::max());
|
||
const boost::multiprecision::uint512_t max256bit(std::numeric_limits<boost::multiprecision::uint256_t>::max());
|
||
|
||
bool check_hash(const crypto::hash &hash_, wide_difficulty_type difficulty)
|
||
{
|
||
//revert byte order
|
||
crypto::hash h = {};
|
||
for (size_t i = 0; i != sizeof(h); i++)
|
||
{
|
||
*(((char*)&h) + (sizeof(h) - (i + 1))) = *(((char*)&hash_) + i);
|
||
}
|
||
|
||
PROFILE_FUNC("check_hash");
|
||
if (difficulty < max64bit)
|
||
{ // if can convert to small difficulty - do it
|
||
std::uint64_t dl = difficulty.convert_to<std::uint64_t>();
|
||
uint64_t low, high, top, cur;
|
||
// First check the highest word, this will most likely fail for a random hash.
|
||
mul(swap64le(((const uint64_t *)&h)[3]), dl, top, high);
|
||
if (high != 0)
|
||
return false;
|
||
mul(swap64le(((const uint64_t *)&h)[0]), dl, low, cur);
|
||
mul(swap64le(((const uint64_t *)&h)[1]), dl, low, high);
|
||
bool carry = cadd(cur, low);
|
||
cur = high;
|
||
mul(swap64le(((const uint64_t *)&h)[2]), dl, low, high);
|
||
carry = cadc(cur, low, carry);
|
||
carry = cadc(high, top, carry);
|
||
return !carry;
|
||
}
|
||
// fast check
|
||
if (((const uint64_t *)&h)[3] > 0)
|
||
return false;
|
||
// usual slow check
|
||
boost::multiprecision::uint512_t hashVal = 0;
|
||
for(int i = 0; i < 4; i++)
|
||
{
|
||
hashVal <<= 64;
|
||
hashVal |= swap64le(((const uint64_t *) &h)[3-i]);
|
||
}
|
||
return (hashVal * difficulty <= max256bit);
|
||
}
|
||
|
||
uint64_t difficulty_to_boundary(wide_difficulty_type difficulty)
|
||
{
|
||
boost::multiprecision::uint256_t nominal_hash = std::numeric_limits<boost::multiprecision::uint256_t>::max();
|
||
nominal_hash = nominal_hash / difficulty;
|
||
uint64_t res = (nominal_hash >> 192).convert_to<std::uint64_t>();
|
||
return res;
|
||
}
|
||
|
||
void difficulty_to_boundary_long(wide_difficulty_type difficulty, crypto::hash& result)
|
||
{
|
||
boost::multiprecision::uint256_t nominal_hash = std::numeric_limits<boost::multiprecision::uint256_t>::max();
|
||
nominal_hash = nominal_hash / difficulty;
|
||
|
||
static_assert(sizeof(uint64_t) * 4 == sizeof(result), "!");
|
||
for (size_t i = 0; i < 4; ++i)
|
||
{
|
||
(reinterpret_cast<uint64_t*>(&result))[i] = nominal_hash.convert_to<uint64_t>();
|
||
nominal_hash >>= 64;
|
||
}
|
||
}
|
||
|
||
void get_cut_location_from_len(size_t length, size_t& cut_begin, size_t& cut_end, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST)
|
||
{
|
||
if (length <= REDEF_DIFFICULTY_WINDOW)
|
||
{
|
||
cut_begin = 0;
|
||
cut_end = length;
|
||
}
|
||
else
|
||
{
|
||
cut_begin = REDEF_DIFFICULTY_WINDOW - REDEF_DIFFICULTY_CUT_LAST + 1;
|
||
cut_end = cut_begin + (REDEF_DIFFICULTY_WINDOW - (REDEF_DIFFICULTY_CUT_OLD + REDEF_DIFFICULTY_CUT_LAST));
|
||
}
|
||
}
|
||
|
||
void get_adjustment_zone(size_t length, size_t& cut_begin, size_t& cut_end, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST)
|
||
{
|
||
//cutoff DIFFICULTY_LAG
|
||
if (length <= REDEF_DIFFICULTY_WINDOW - (REDEF_DIFFICULTY_CUT_OLD + REDEF_DIFFICULTY_CUT_LAST))
|
||
{
|
||
cut_begin = 0;
|
||
cut_end = length;
|
||
}
|
||
else
|
||
{
|
||
cut_begin = REDEF_DIFFICULTY_CUT_LAST;
|
||
cut_end = cut_begin + (REDEF_DIFFICULTY_WINDOW - (REDEF_DIFFICULTY_CUT_OLD + REDEF_DIFFICULTY_CUT_LAST));
|
||
if (cut_end > length)
|
||
cut_end = length;
|
||
|
||
}
|
||
CHECK_AND_ASSERT_THROW_MES(/*cut_begin >= 0 &&*/ cut_begin + 2 <= cut_end && cut_end <= length, "validation in next_difficulty is failed");
|
||
}
|
||
|
||
wide_difficulty_type get_adjustment_for_zone(vector<uint64_t>& timestamps_sorted, vector<wide_difficulty_type>& cumulative_difficulties, size_t target_seconds, size_t REDEF_DIFFICULTY_WINDOW, size_t REDEF_DIFFICULTY_CUT_OLD, size_t REDEF_DIFFICULTY_CUT_LAST)
|
||
{
|
||
size_t length = timestamps_sorted.size();
|
||
size_t cut_begin = 0;
|
||
size_t cut_end = 0;
|
||
get_adjustment_zone(length, cut_begin, cut_end, REDEF_DIFFICULTY_WINDOW, REDEF_DIFFICULTY_CUT_OLD, REDEF_DIFFICULTY_CUT_LAST);
|
||
|
||
uint64_t time_span = timestamps_sorted[cut_begin] - timestamps_sorted[cut_end - 1];
|
||
if (time_span == 0)
|
||
{
|
||
time_span = 1;
|
||
}
|
||
wide_difficulty_type total_work = cumulative_difficulties[cut_begin] - cumulative_difficulties[cut_end - 1];
|
||
boost::multiprecision::uint256_t res = (boost::multiprecision::uint256_t(total_work) * target_seconds + time_span - 1) / time_span;
|
||
if (res > max128bit)
|
||
return 0; // to behave like previous implementation, may be better return max128bit?
|
||
return res.convert_to<wide_difficulty_type>();
|
||
}
|
||
|
||
wide_difficulty_type next_difficulty_1(vector<uint64_t>& timestamps, vector<wide_difficulty_type>& cumulative_difficulties, size_t target_seconds, const wide_difficulty_type& difficulty_starter)
|
||
{
|
||
|
||
// timestamps - first is latest, back - is oldest timestamps
|
||
if (timestamps.size() > DIFFICULTY_WINDOW)
|
||
{
|
||
timestamps.resize(DIFFICULTY_WINDOW);
|
||
cumulative_difficulties.resize(DIFFICULTY_WINDOW);
|
||
}
|
||
|
||
|
||
size_t length = timestamps.size();
|
||
CHECK_AND_ASSERT_MES(length == cumulative_difficulties.size(), 0, "Check \"length == cumulative_difficulties.size()\" failed");
|
||
if (length <= 1)
|
||
{
|
||
return difficulty_starter;
|
||
}
|
||
static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small");
|
||
|
||
CHECK_AND_ASSERT_MES(length <= DIFFICULTY_WINDOW, 0, "length <= DIFFICULTY_WINDOW check failed, length=" << length);
|
||
|
||
sort(timestamps.begin(), timestamps.end(), std::greater<uint64_t>());
|
||
|
||
static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large");
|
||
wide_difficulty_type dif_slow = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW, DIFFICULTY_CUT/2, DIFFICULTY_CUT/2);
|
||
wide_difficulty_type dif_medium = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW/3, DIFFICULTY_CUT / 8, DIFFICULTY_CUT / 12);
|
||
wide_difficulty_type dif_fast = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW/18, DIFFICULTY_CUT / 10, 2);
|
||
uint64_t devider = 1;
|
||
wide_difficulty_type summ = dif_slow;
|
||
if (dif_medium != 0)
|
||
{
|
||
summ += dif_medium;
|
||
++devider;
|
||
}
|
||
if (dif_fast != 0)
|
||
{
|
||
summ += dif_fast;
|
||
++devider;
|
||
}
|
||
return summ / devider;
|
||
}
|
||
|
||
wide_difficulty_type next_difficulty_2(vector<uint64_t>& timestamps, vector<wide_difficulty_type>& cumulative_difficulties, size_t target_seconds, const wide_difficulty_type& difficulty_starter)
|
||
{
|
||
|
||
// timestamps - first is latest, back - is oldest timestamps
|
||
if (timestamps.size() > DIFFICULTY_WINDOW)
|
||
{
|
||
timestamps.resize(DIFFICULTY_WINDOW);
|
||
cumulative_difficulties.resize(DIFFICULTY_WINDOW);
|
||
}
|
||
|
||
|
||
size_t length = timestamps.size();
|
||
CHECK_AND_ASSERT_MES(length == cumulative_difficulties.size(), 0, "Check \"length == cumulative_difficulties.size()\" failed");
|
||
if (length <= 1)
|
||
{
|
||
return difficulty_starter;
|
||
}
|
||
static_assert(DIFFICULTY_WINDOW >= 2, "Window is too small");
|
||
|
||
CHECK_AND_ASSERT_MES(length <= DIFFICULTY_WINDOW, 0, "length <= DIFFICULTY_WINDOW check failed, length=" << length);
|
||
|
||
sort(timestamps.begin(), timestamps.end(), std::greater<uint64_t>());
|
||
|
||
static_assert(2 * DIFFICULTY_CUT <= DIFFICULTY_WINDOW - 2, "Cut length is too large");
|
||
wide_difficulty_type dif_slow = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW, DIFFICULTY_CUT / 2, DIFFICULTY_CUT / 2);
|
||
wide_difficulty_type dif_medium = get_adjustment_for_zone(timestamps, cumulative_difficulties, target_seconds, DIFFICULTY_WINDOW / 3, DIFFICULTY_CUT / 8, DIFFICULTY_CUT / 12);
|
||
uint64_t devider = 1;
|
||
wide_difficulty_type summ = dif_slow;
|
||
if (dif_medium != 0)
|
||
{
|
||
summ += dif_medium;
|
||
++devider;
|
||
}
|
||
return summ / devider;
|
||
}
|
||
|
||
//--------------------------------------------------------------
|
||
// LWMA-1 difficulty algorithm (zawy12)
|
||
// Linear Weighted Moving Average — adjusts every block with a
|
||
// ~60-block window. Battle-tested in Monero against ASICs and
|
||
// botnets. Much faster convergence than the 720-block Zano algo.
|
||
//--------------------------------------------------------------
|
||
wide_difficulty_type next_difficulty_lwma(vector<uint64_t>& timestamps, vector<wide_difficulty_type>& cumulative_difficulties, size_t target_seconds, const wide_difficulty_type& difficulty_starter)
|
||
{
|
||
const int64_t T = static_cast<int64_t>(target_seconds);
|
||
const size_t N = 60; // LWMA window size (solve times)
|
||
|
||
size_t length = timestamps.size();
|
||
CHECK_AND_ASSERT_MES(length == cumulative_difficulties.size(), difficulty_starter,
|
||
"LWMA: timestamps/difficulties size mismatch");
|
||
|
||
if (length <= 1)
|
||
return difficulty_starter;
|
||
|
||
// We need at most N+1 entries (giving N solve times)
|
||
if (length > N + 1)
|
||
{
|
||
timestamps.resize(N + 1);
|
||
cumulative_difficulties.resize(N + 1);
|
||
length = N + 1;
|
||
}
|
||
|
||
// Input arrives newest-first; LWMA needs oldest-first
|
||
std::reverse(timestamps.begin(), timestamps.end());
|
||
std::reverse(cumulative_difficulties.begin(), cumulative_difficulties.end());
|
||
|
||
// Now: [0]=oldest … [length-1]=newest
|
||
size_t n = length - 1; // number of solve-time intervals
|
||
|
||
int64_t weighted_solvetimes = 0;
|
||
|
||
for (size_t i = 1; i <= n; i++)
|
||
{
|
||
int64_t st = static_cast<int64_t>(timestamps[i])
|
||
- static_cast<int64_t>(timestamps[i - 1]);
|
||
|
||
// Clamp to [-6T, 6T] to limit timestamp-manipulation impact
|
||
if (st < -(6 * T)) st = -(6 * T);
|
||
if (st > (6 * T)) st = (6 * T);
|
||
|
||
weighted_solvetimes += st * static_cast<int64_t>(i);
|
||
}
|
||
|
||
// Guard against zero / negative (would be pathological timestamps)
|
||
if (weighted_solvetimes <= 0)
|
||
weighted_solvetimes = 1;
|
||
|
||
wide_difficulty_type total_work = cumulative_difficulties[n] - cumulative_difficulties[0];
|
||
|
||
// LWMA-1 formula:
|
||
// next_D = total_work * T * (n+1) / (2 * weighted_solvetimes * n)
|
||
//
|
||
// The divisor (n+1)/(2*n) normalises the linear weights 1..n
|
||
// whose sum is n*(n+1)/2.
|
||
boost::multiprecision::uint256_t next_d =
|
||
(boost::multiprecision::uint256_t(total_work) * T * (n + 1))
|
||
/ (boost::multiprecision::uint256_t(2) * weighted_solvetimes * n);
|
||
|
||
if (next_d < 1)
|
||
next_d = 1;
|
||
|
||
if (next_d > max128bit)
|
||
return difficulty_starter;
|
||
|
||
return next_d.convert_to<wide_difficulty_type>();
|
||
}
|
||
}
|